RRDCREATE(L) rrdtool RRDCREAE(1)

NAME
rrdcreate — Set up aweRound Robin Database

SYNOPSIS
rrdtool create filename [——start|-bstarttim§g [--steg-ssted [——template-ttemplate-fil¢
[-—sourcd-r source-fil§ [—-—no-overwrite [FO] [—-—-daemor—d addres} [DS:ds-namg=mapped-ds-
nam¢[source-inde}]:DST.dst argumeniq RRA: CF:cf arguments

DESCRIPTION
The create function of RRDtool lets you set upriound Robin Databas®RD) files. Théfile is created
at its final, full size and filled withtUNKNOWN?* data, unless one or more sourRRD files hare been
specified and thehold suitable data to “pre-fillthe newRRD file.

filename
The name of th&RD you want to creatdrRRD files should end with thexeension.rrd. Howeve, RRDtool
will accept ang filename.

——start|-b start time(default: now — 10s)
Specifies the time in seconds since 1970-0130¢ when the first value should be added to RRD.
RRDtool will not accept ap data timed before or at the time specified.

See also A STYLE TIME SPECIFICATION section in therdfetch documentation for other ways to specify
time.

If one or more source files is used to pre-fill the RRD, the ——start option may be omitted. In that case,
the latest update time among all source files will be used as the last update time @f &RDngle,
effectively setting the start time.

——step|-sstep(default: 300 seconds)
Specifies the base interval in seconds with which data will be fed inRRbe A scaling factor may be
present as a suffix to the integer; s&&ER HEARTBEAT, and Rows As Durations”.

——no-overwrite|-O
Do not clobber an existing file of the same name.

——daemon|-daddress
Address of the rrdcached daemdrur a list of accepted formats, see tHeoption in the rrdcached manual.

rrdtool create ——daemon unix:/var/run/rrdcached.sock /var/lib/rrd/foo.rrd I<other options>

[-—template|-ttemplate-fil¢
Specifies a templatBRD file to tale gep, DS and RRA definitions from. This allows one to base the
structure of a ne file on some existing file. The data of the template filOF used for pre-filling, but it is
possible to specify the same file as a source file (see below).

Additional DS andRRA definitions are permitted, and will be added to those taken from the template.

——source|-rsource-file
One or more sourcRRD files may be named on the command line. Data from these source files will be
used to prefill the create®rRD file. The output file and one source file may refer to the same file name. This
will effectively replace the source file with thewm®&RD file. While there is the danger to loose the source
file because it gets replaced, there is no danger that the source and fhe may be ‘garbled’ together
at ary point in time, because the wdile will always be created as a temporary file first and will only be
moved to its final destination once it has been written in its entirety.

Prefilling is done by matching upS names, RRAs and consolidation functions and choosing the best
awailable data resolution when doing so. Prefilling may not be mathematically correct in all gases (e
resolutions hee © change due to changed stepping of thgeeRRD and old and n& resolutions do not
match up with old/ne bin boundaries in RRAS).

In other words: A best effort is made to presecdata during prefilling. Also, pre-filling of RRAs may only
be possible for certain kinds @S types. Prefilling may also fia drange effects on Holt-Wters
forecasting RRAs. In other words: there is no guarantee for data-correctness.

154 2015-11-10 1

RRDCREATE(L) rrdtool RRDCREAE(1)

When ‘pre-filling”’ a RRD file, the structure of the mefile must be specified as usual usigand RRA
specifications as outlined beloData will be taken from source files basedDshnames and types and in

the order the source files are specified in. Data sources with the same name from different source files will
be combined to form a medata source. Generallfor ary point in time the n& RRD file will cover after

its creation, data from only one source file wil&deen used for pre-filling. Heever, data from multiple

sources may be combined if it refers tdatiént times or an earlier named source file holds unknown data
for a time where a later one holds known data.

If this automatic data selection is not desired,0Besyntax allows one to specify a mapping of target and
source data sources for prefilling. This syntax allows one to rename data sources and to restrict prefilling
for aDSto only use data from a single source file.

Prefilling currently only wrks reliably for RRAs using one of the classic consolidation functions, that is
one of:AVERAGE, MIN, MAX, LAST. It might also currently hae poblems withCOMPUTEdata sources.

Note that the act of prefilling duringreate is similar to a lot of the operationvadable via thetune
command, but usingreate syntax.

DS:.ds-namg=mapped-ds-nanfissource-indel]: DST.dst arguments
A single RRD can accept input from geral data sourceDg), for example incoming and outgoing fiaf
on a specific communication line. With tbe configuration option you must define some basic properties
of each data source you want to store inRR®.

ds-namds the name you will use to reference this particular data source fr&R@MA ds-namemust be
1to 19 daracters long in the characters [a-zA-Z0-9].

DST defines the Data Source Type. The remaining arguments of a data source entry depend on the data
source type. &t GAUGE, COUNTER, DERIVE, DCOUNTER, DDERIVENdABSOLUTE the format for a data
source entry is:

DS:ds-name{ GAUGE| COUNTER| DERIVE| DCOUNTER| DDERIVE| ABSOLUTE : heartbeatmin:max
For COMPUTEdata sources, the format is:
DS:ds-nameCOMPUTErpn-expression

In order to decide which data source type to uségwethe definitions that foll. Also consult the section
on “HOW TO MEASURE?” for further insight.

GAUGE
is for things lile ttmperatures or number of people in a room or the value of a RedHat share.

COUNTER
is for continuous incrementing counterselithe ifinOctets counter in a routethe COUNTER data
source assumes that the countevenalecreases, except when a counteerfltows. The update
function takes thewerflow into account. The counter is stored as a per-second rate. When the counter
overflows, RRDtool checks if theverflow happened at the 32bit or 64bit border and acts accordingly
by adding an appropriate value to the result.

DCOUNTER
the same aSOUNTER, but for quantities expressed as double-precision floating point nur@batd
be used to track quantities that increment by non-integer numbers, i.e. number of seconds that some
routine has taken to run, total weight processed by some technology equipmeithetonly
substantial difference is th®(COUNTER can either be upward counting omdoward counting, bt
not both at the same time. The current direction is detected automatically on the second non-
undefined counter update andydmrther change in the direction is considered a reset. The ne
direction is determined and lostt in by the second update after reset and its difference to the value at
reset.

DERIVE
will store the deriative d the line going from the last to the curreatue of the data source. This can
be useful for gauges, for example, to measure the rate of people enteringngr degom. Internally
derive works exactly lile COUNTERbut without overflow checks. So if your counter does not reset at

154 2015-11-10 2

RRDCREATE(L) rrdtool RRDCREAE(1)

154

32 or 64 bit you might want to uSERIVE and combine it with MIN value of 0.

DDERIVE
the same aBERIVE, but for quantities expressed as double-precision floating point number.

NOTE on COUNTER vs DERIVE
by Don Baarda <don.baarda@baesystems.com>

If you cannot toleratever mistaking the occasional counter reset for a legitimate counter wrap, and
would prefer ‘Unknowns’ for all legitimate counter wraps and resetsyagb useDERIVE with
min=0. Otherwise, usin@OUNTER with a suitable max will return correcales for all lgitimate
counter wraps, mark some counter resetsUaskhown”, but can mista& some counter resets for a
legitimate counter wrap.

For a 5 minute step and 32-bit counte¢he probability of mistaking a counter reset for gitleate

wrap is aguably about 0.8% per 1Mbps of maximum bandwidth. Note that this equates to 80% for
100Mbps interfaces, so for high bandwidth irdeds and a 32bit count@¥ERIVE with min=0 is
probably preferable. If you are using a 64bit coyrjtest about ay max setting will eliminate the
possibility of mistaking a reset for a counter wrap.

ABSOLUTE
is for counters which get reset upon reading. This is useddbcbdunters which tend toaflow. So
instead of reading them normally you reset them aftenygead to ma& sure you hae a naximum
time aailable before the nextwverflow. Another usage is for things you countelikumber of
messages since the last update.

COMPUTE
is for storing the result of a formula applied to other data sources RRiDeThis data source is not
supplied a value on updateytlyather its Primary Data Points (PDPs) are computed from the PDPs of
the data sources according to the rgpression that defines the formula. Consolidation functions are
then applied normally to the PDPs of theMPUTE data source (that is the rpn-expression is only
applied to generate PDPs). In database software, such data sets are referredintoads or
“ computed’columns.

heartbeatdefines the maximum number of seconds that may pass betweepdates of this data source
before the value of the data source is assumed*dMENOWN*.

min and max define the expected range values for data supplied by a data sounie atd/ormaxare
specified ap value outside the defined range will bgarded assUNKNOWN?*. If you do not knw or care
about min and max, set them to U for unkmo Note that min and maxvedys refer to the processed
values of theDS. For a traffic-COUNTER type DS this would be the maximum and minimum data-rate
expected from the device.

If information on minimal/maximal expected values is availaeays set the min and/or maxoperties.
This will help RRDtool in doing a simple sanity dhea he data supplied when running update.

rpn-expressiordefines the formula used to compute the PDPs@d®PUTE data source from other data
sources in the samérRD>. It is similar to defining &DEF argument for the graph command. Please refer
to that manual page for a list and descriptioRBRN operations supportedoFCOMPUTEdata sources, the
following RPN operations are not supporteZfdUNT, PREV, TIME, andLTIME. In addition, in defining the
RPN expression, th&€ OMPUTE data source may only refer to the names of data source listedystg in

the create command. This is similar to the restriction @iztFs must refer only toDEFs and CDEFs
previously defined in the same graph command.

When pre-filling the ne@ RRD file using one or more sourd@RDs, theDS specification may hold an
optional mapping after thBS name. This taés the form of an equal sign followed by a mappedso
name and an optional source iR@aclosed in square brackets.

For example, thedS
DS:a=b[2]:GAUGE:120:0:U

2015-11-10 3

RRDCREATE(L) rrdtool RRDCREAE(1)

specifies that th®S nameda should be pre-filled from thBS namedb in the second listed source file
(source indices are 1-based).

RRA:CF.cf arguments

The purpose of aRRD is to store data in the round robin axelsi (RRA). An archve @nsists of a number
of data values or statistics for each of the defined data-so®ean is defined with aRRA line.

When data is entered into RRD, it is first fit into time slots of the length defined with theoption, thus
becoming grimary data point

The data is also processed with the consolidation funci®) 6f the archie. There are seral
consolidation functions that consolidate primary data points via angagfeinction: AVERAGE, MIN,
MAX , LAST.

AVERAGE
the arerage of the data points is stored.

MIN
the smallest of the data points is stored.

MAX
the largest of the data points is stored.

LAST
the last data points is used.

Note that data agggetion inevitably leads to loss of precision and information. The trick is to pick the
aggreae function such that thaterestingproperties of your data is kept across the agajan process.

The format ofRRA line for these consolidation functions is:
RRA:{AVERAGE| MIN | MAX | LAST} : xff: stepsrows

xff The xfiles factor defines what part of a consolidation interval may be made upUMKINOWN* data
while the consolidated value is stillga&ded as knan. It is given as he ratio of alleved *UNKNOWN*
PDPs to the number of PDPs in the interval. Thus, it ranges from 0 to 1 (e3clusi

stepsdefines har mary of theseprimary data pointsare used to build eonsolidated data poinwhich then
goes into the arché. See also ‘STER HEARTBEAT, and Rows As Durations”.

rows defines har mary generations of data values are kept inR®A. Obviously, this has to be greater
than zero. See als@STER HEARTBEAT, and Rows As Durations”.

Aberrant Behavior Detection with Holt-Winters Forecasting

154

In addition to the agggete functions, there are a set of specialized functions that eR&tildool to
provide data smoothing (via the Holt-Winters forecasting algorithm), confidence bands, and the flagging
aberrant behavior in the data source time series:

* RRA:HWPREDICTrows alphabetaseasonal perigdrra-num|
 RRA:MHWPREDICTrows alphabetaseasonal perigdrra-num|

* RRA:SEASONAlseasonal periogjammarra-nuni:smoothing—window=fraction]|

* RRA:DEVSEASONAIseasonal periodjammarra-nun:smoothing—window=fraction|
. RRA:DEVPREDICTrows rra-num

* RRA:FAILURESrowsthresholdwindow lengthrra-num

TheseRRAs differ from the true consolidation functions invaml ways. First,each of theRRAS is
updated once forvery primary data point. Second, tha’RAs are interdependentoTgenerate real-time
confidence bounds, a matched seSBASONL, DEVSEASONAL, DEVPREDICT and eitherHWPREDICT
or MHWPREDICT must &ist. Generating smoothed values of the primary data points reqUBESSIDNAL
RRA and either amiWPREDICT or MHWPREDICT RRA. Aberrant behavior detection requiesSILURES,
DEVSEASONAL, SEASONAL and eitheHWPREDICTor MHWPREDICT.

The predicted, or smoothed, values are stored iRWWeREDICTor MHWPREDICTRRA. HWPREDICTand

2015-11-10 4

RRDCREATE(L) rrdtool RRDCREAE(1)

MHWPREDICT are actually tw variations on the Holt-\kters method. Theare interchangeable. Both
attempt to decompose data into three components: a baseline, a trend, and a seasiomait.coef
HWPREDICT adds its seasonal coefficient to the baseline to form a prediction, wh&@BREDICT
multiplies its seasonal coefficient by the baseline to form a prediction. Theedife is noticeable when

the baseline changes significantly in the course of a sea@MREDICTwill predict the seasonality to stay
constant as the baseline changag, MHWPREDICT will predict the seasonality to groor shrink in
proportion to the baseline. The proper choice of method depends on the thing being maateled. F
simplicity, the rest of this discussion will refer ®WPREDICT,but MHWPREDICT may be substituted in its
place.

The predicted deviations are storedDBVPREDICT (think a standard deviation which can be scaled to
yield a confidence band). TIRAILURES RRA stores binary indicators. A 1 marks the ixetbobservation

as filure; that is, the number of confidence bounds violations in the precedingwohdbsenations met

or exceeded a specified threshold. Ammaple of using thes®RAs to graph confidence bounds and
failures appears in rrdgraph.

The SEASONAL andDEVSEASONAL RRAs store the seasonal céiefents for the Holt-Winters forecasting
algorithm and the seasonal deviations, respagti There is one entry per obsation time point in the
seasonal cycle. For example, if primary data points are genevatgdiee minutes and the seasongkcte
is 1 day both SEASONAL andDEVSEASONALwill have 288 rows.

In order to simplify the creation for the novice yser addition to supporting »@licit creation of the
HWPREDICT, SEASONAL, DEVPREDICT, DEVSEASONAL, and FAILURES RRAs, the RRDtool create
command supports implicit creation of the other four wHB/PREDICT is specified alone and the final
argumentra-numis omitted.

rows specifies the length of thBRA prior to wrap around. Remember that there is a one-to-one
correspondence between primary data points and entries in these RRAs. HWPREDICT CF rows
should be larger than theeasonal periodlf the DEVPREDICT RRA is implicitly created, the defilt
number of rows is the same as WWPREDICTrows argument. If theFAILURES RRA is implicitly created,
rows will be set to theseasonal periodurgument of theHWPREDICTRRA. Of course, theRRDtool resize
command isailable if these defaults are not sufficient and the creator wishesitbexplicit creations of

the other specialized functid®RAs.

seasonal periocspecifies the number of primary data points in a seasoméd. clf SEASONAL and
DEVSEASONAL are implicitly created, this argument for thoR®As is set automatically to thealue
specified byHWPREDICT. If they are explicitly created, the creator should verify that all ttgeasonal
periodarguments agree.

alphais the adaption parameter of the intercept (or baselinejiagent in the Holt-Winters forecasting
algorithm. See rrdtool for a description of this algoritlafphamust lie between 0 and 1. A value closer to

1 means that more recent obsaigns carry greater weight in predicting the baseline component of the
forecast. A alue closer to 0 means that past history carries greater weight in predicting the baseline
component.

betais the adaption parameter of the slope (or linear trend) coefficient in the Holt-Winters forecasting
algorithm.betamust lie between 0 and 1 and plays the same rodpas with respect to the predicted
linear trend.

gammais the adaption parameter of the seasonalficaefts in the Holt-Winters forecasting algorithm
(HWPREDICT) or the adaption parameter in the exponential smoothing update of the seasonal deviations. It
must lie between 0 and 1. If tIBEASONAL and DEVSEASONAL RRAs are created implicitlythey will

both hae the same value fagamma the value specified for theWPREDICT alpha agument. Note that

because there is one seasonal coefficient (or deviation) for each time point during the sgclsoriaéc
adaptation rate is much slower than the baseline. Each seasonal coefficient is only updated (or adapts) when
the observed value occurs at the offset in the seasonal cycle corresponding to that coefficient.

If SEASONAL and DEVSEASONAL RRAs are createdlicitly, gammaneed not be the same for both.
Note thatgammacan also be changed via tR&Dtool tunecommand.

154 2015-11-10 5

RRDCREATE(L) rrdtool RRDCREAE(1)

smoothing-windovgpecifies the fraction of a season that shouldvbeaged around each point. By dett,
the value osmoothing-windovis 0.05, which means each valueSBASONAL andDEVSEASONAL will be
occasionally replaced byveraging it with its easonal perio®.05) nearest neighborsSetting
smoothing-windovto zero will disable the runningrerage smoother altogether.

rra-num provides the links between relat®RAs. If HWPREDICTis specified alone and the otHRRAs
are created implicitlythen there is no need to worry about this argumemRAs are createdxplicitly,
then carefully pay attention to this argument. For eRBiA which includes this gument, there is a
dependeng between thaRRA and anotheRRA. Therra-numargument is the 1-based indm the order
of RRA creation (that is, the order theppear in theereatecommand). The dependeRRA for eachRRA
requiring therra-numargument is listed here:

* HWPREDICTrra-numis the inde of the SEASONALRRA.

e SEASONALrra-numis the inde of the HWPREDICTRRA.

* DEVPREDICTrra-numis the inde of the DEVSEASONALRRA.
* DEVSEASONALTrra-numis the inde of the HWPREDICTRRA.
* FAILURESTrra-numis the inde of the DEVSEASONALRRA.

thresholdis the minimum number of violations (obsedvvalues outside the confidence bounds) within a
window that constitutes a failure. If tHAILURES RRA is implicitly created, the default value is 7.

window lengthis the number of time points in the windoSpecify an integer greater than or equal to the
threshold and less than or equal to Z8e time interval this winde represents depends on the inakrv
between primary data points. If tRRILURES RRA is implicitly created, the default value is 9.

STEPR, HEARTBEAT, and Rows As Durations
Traditionally RRDtool specifie@DP intenals in seconds, and most othatues as either secondsRiDP
counts. Thignade the specification for databases rather opaque; for example

rrdtool create power.rrd \
——start now—-2h ——step 1\
DS:watts:GAUGE:300:0:24000 \
RRA:AVERAGE:0.5:1:864000 \
RRA:AVERAGE:0.5:60:129600 \
RRA:AVERAGE:0.5:3600:13392 \
RRA:AVERAGE:0.5:86400:3660

creates a database of power values collected once per second, withmidite (300 second) heartbeat,
and fourRRAs: ten days of one second, 90 days of one minute, 18 months of opandaen years of one
day averages.

Step, heartbeat, arkDP counts and rows may also be specified as durations, which areeaogigers
with a single-character suffix that specifies a scalamgot See ‘rrd_scaled_duratiohin librrd for scale
factors of the supported dixes: s (seconds)m(minutes),h (hours),d (days),w (weeks),M(months), and

y (years).

Scaled step and heartbeatlues (which are natly durations in seconds) are used directihile
consolidation function n@ arguments are divided by their step to produce the number of rows.

With this feature the same specification asvalmmn be written as:

rrdtool create power.rrd \
——start now—-2h ——step 1s\
DS:watts:GAUGE:5m:0:24000 \
RRA:AVERAGE:0.5:1s:10d \
RRA:AVERAGE:0.5:1m:90d \
RRA:AVERAGE:0.5:1h:18M \
RRA:AVERAGE:0.5:1d:10y

154 2015-11-10 6

RRDCREATE(L) rrdtool RRDCREAE(1)

The HEARTBEAT and the STEP

154

Here is an explanation by Don Baarda on the inrerkings of RRDtool. It may help you to sort outywh
all this *UNKNOWN?* data is popping up in your databases:

RRDtool gets fed samples/updates at arbitrary times. From these it builds Primary Data Points (PDPs) on
evay “step” interval. The PDPs are then accumulated into the RRAs.

The ‘heartbeat’defines the maximum acceptable interval between samples/updates. If the interval between
samples is less thathéartbeat, then an ®erage rate is calculated and applied for that interval. If the
interval between samples is longer thdreartbeat, then that entire interval is considerédnknown”.

Note that there are other things that can enal@mple interval ‘Unknown’, such as the ratexeeeding

limits, or a sample that was explicitly marked as unknown.

The known rates during RDPs “step” intenal are used to calculate aveeage rate for thaPDP.If the
total “unknown” time accounts for more thdralf the ‘step”, the entirePDPis marked as‘unknown”.
This means that a mixture of known ahthknown” sample times in a singleDP*“ step’ may or may not
add up to enough “knowhtime to warrant a knowRDP.

The ‘heartbeat’ can be short (unusual) or long (typical) relatio the ‘step” intenal between PDPs. A
short ‘heartbeat’ means you require multiple samples p&®P,and if you dort get them mark théDP
unknowvn. A long heartbeat can span multipkteéps’, which means it is acceptable tovearultiple PDPs
calculated from a single sample. Artreme example of this might be atép” of 5 minutes and a
“ heartbeat’of one dayin which case a single sampleegy day will result in all the PDPs for that entire
day period being set to the sanverage rate-— Don Baarda <don.baarda@baesystems.com>

time|
axis|
begin__ |00|
|01}
u|02|-———* samplel, restart "hb"-timer
ulog| /
ulo4| /
ulo5| /
u|o6|/ "hbt" expired
ulo7|
|08|-———* sample2, restart "hb"
[09] /
[10] /
u|11|-———* sample3, restart "hb"
ul12| /
ul13| /
stepl_u|14|/
u|15|/ "swt" expired
uj16|
|17|-———* sample4, restart "hb", create "pdp" for stepl =
18] / = unknown due to 10 "u" labled secs > 0.5 * step
[19] /
[20] /
|21|-———* sample5, restart "hb"
[22] /
23] /
|24|-———* sample6, restart "hb"
[25] /
[26] /
|27|-———* sample7?, restart "hb"
step2_ |28 /
[22] /

2015-11-10 7

RRDCREATE(L) rrdtool RRDCREAE(1)

|23|-———* sample8, restart "hb", create "pdp" for stepl, create "cdp"
[24] /
[25] /

graphics byladimir.laviov@desy.de

HOW TO M EASURE

Here are a f& hints on hev to measure:

Temperature
Usually you hae me type of meter you can read to get the temperafiine. temperature is not
really connected with a time. The only connection is that the temperature reading happened at a certain
time. You can use th6AUGE data source type for this. RRDtool will then record your reading
together with the time.

Mail Messages
Assume you ha& a nethod to count the number of messages transported by your mail server in a
certain amount of time, giving you datadiks messages in the last 65 seconds’. If you look at the
count of 5 lile an ABSOLUTE data type you can simply update fRRD with the number 5 and the
end time of your monitoring period. RRDtool will then record the humber of messages per second. If
at some later stage you want to wnthe number of messages transported in a ytaly can get the
aveage messages per second from RRDtool for the day in question and multiply this number with the
number of seconds in a d&8ecause all math is run with Doubles, the precision should be acceptable.

It's dways a Rate
RRDtool stores rates in amount/second foDUNTER, DERIVE, DCOUNTER, DDERIVEand
ABSOLUTE data. Wheryou plot the data, you will get on the y axis amount/second which you might
be tempted to coert to an absolute amount by multiplying by the delta-time between the points.
RRDtool plots continuous data, and as such is not appropriate for plotting absolute amounts as for
example “total bytes’sent and receed in a outer What you probably ant is plot rates that you can
scale to bytes/hourfor example, or plot absolute amounts with another tool that drawgldisy
where the delta-time is clear on the plot for each point (such that when you read the graph you see for
exampleGB on the y axis, days on the x axis and one bar for each day).

EXAMPLE

rrdtool create temperature.rrd ——step 300 \
DS:temp:GAUGE:600:-273:5000 \
RRA:AVERAGE:0.5:1:1200 \
RRA:MIN:0.5:12:2400 \
RRA:MAX:0.5:12:2400\
RRA:AVERAGE:0.5:12:2400

This sets up aRRD calledtemperatuerrd which accepts one temperature valuerg 300 seconds. If no
new data is supplied for more than 600 seconds, the temperature beddRteSOWN* The minimum
acceptable value is —273 and the maximum is 5’000.

A few achive aeas are also defined. The first stores the temperatures supplied for 100 hours (1’200 * 300
seconds = 100 hours). The sec®RIA stores the minimum temperature recordeer @very hour (12 *

300 seconds = 1 hour), for 100 days (2'400 hours). The third and the Rruth do the same for the
maximum and\aerage temperature, respeety.

EXAMPLE 2
rrdtool create monitor.rrd ——step 300 \
DS:ifOutOctets:COUNTER:1800:0:4294967295 \
RRA:AVERAGE:0.5:1:2016 \

154

RRA:HWPREDICT:1440:0.1:0.0035:288

This example is a monitor of a router interface. The fRBA tracks the traffic flv in octets; the second
RRA generates the specialized functidRRAs for aberrant behéor detection. Note that thea-num
argument ofHWPREDICTis missing, so the othé&RAs will implicitly be created with defult parameter

2015-11-10 8

RRDCREATE(L) rrdtool RRDCREAE(1)

values. In this gample, the forecasting algorithm baseline adapts quickly; in fact the most recent one hour
of observations (each at 5 minute intds) accounts for 75% of the baseline prediction. The linear trend
forecast adapts much morewslyp. Obsenations made during the last day (at 288 olstérus per day)
account for only 65% of the predicted linear trend. Note: these computations rely oipcarerdial
smoothing formula described in theSA 2000 paper.

The seasonal cycle is one day (288 data points at 300 secondilg)teand the seasonal adaption
parameter will be set to 0.1. TR&KD file will store 5 days (1’440 data points) of forecasts andatien
predictions before wrap around. The file will store 1 day (a seasonal cycle) of 0-1 indicators in the
FAILURES RRA.

The sameRRD file and RRAs are created with the following command, which explicitly creates all
specialized functio®RRAs using “STER HEARTBEAT, and Rows As Durations”.

rrdtool create monitor.rrd ——step 5m\
DS:ifOutOctets:COUNTER:30m:0:4294967295 \
RRA:AVERAGE:0.5:1:2016 \
RRA:HWPREDICT:5d:0.1:0.0035:1d:3 \
RRA:SEASONAL:1d:0.1:2\
RRA:DEVSEASONAL:1d:0.1:2 \
RRA:DEVPREDICT:5d:5 \
RRA:FAILURES:1d:7:9:5

Of course, explicit creation need not replicate implicit create, a number of arguments could be changed.

EXAMPLE 3
rrdtool create proxy.rrd ——step 300 \
DS:Requests:DERIVE:1800:0:U \
DS:Duration:DERIVE:1800:0:U \
DS:AvgReqDur:COMPUTE:Duration,Requests,0,EQ,1,Requests,IF,/ \
RRA:AVERAGE:0.5:1:2016

This example is monitoring the&age request duration during each 300 sec iatéov requests processed

by a web proxy during the inteak Inthis case, the proxy exposesoteounters, the number of requests
processed since boot and the total cumedadiration of all processed requests. Clearly these counters both
have ©me rollover point, but using th®ERIVE data source also handles the reset that occurs when the web
proxy is stopped and restarted.

In the RRD, the first data source stores the requests per second rate during the interval. The second data
source stores the total duration of all requests processed during thel idieided by 300. ThEOMPUTE
data source divides eabibP of the AccumDuration by the correspondiPigP of TotalRequests and stores
the arerage request duration. The remainder ofRR&l expression handles the divide by zero case.
AUTHORS
Tobias Oetiker <tobi@oetiker.ch>, Peter Stamfest <peter@stamfest.at>

154 2015-11-10 9

