
RRDTHREADS(1) rrdtool RRDTHREADS(1)

NAME
rrdthreads − Provisions for linking the RRD library to use in multi−threaded programs

SYNOPSIS
Using librrd in multi-threaded programs requires some extra precautions, as theRRD library in its original
form was not thread-safe at all. This document describes requirements and pitfalls on the way to use the
multi-threaded version of librrd in your own programs. It also gives hints for futureRRD development to
keep the library thread-safe.

Currently only someRRD operations are implemented in a thread-safe way. They all end in the usual "_r "
suffix.

DESCRIPTION
In order to use librrd in multi-threaded programs you must:

• Link with librrd_th instead oflibrrd (use−lrrd_th when linking)

• Use the "_r " functions instead of the normal API-functions

• Do not use any at-style time specifications. Parsing of such time specifications is terribly non-thread-
safe.

• Never use non *_r functions unless it is explicitly documented that the function is tread-safe.

• Every threadSHOULD call rrd_get_context() before its first call to any librrd_th function
in order to set up thread specific data. This is not strictly required, but it is the only way to test if
memory allocation can be done by this function. Otherwise the program may die with aSIGSEGVin a
low-memory situation.

• Always call rrd_error_clear() before any call to the library. Otherwise the call might fail due
to some earlier error.

NOTES FOR RRD CONTRIBUTORS
Some precautions must be followed when developing RRD from now on:

• Only use thread-safe functions in library code. Many often used libc functions aren’t thread-safe. Take
care in the following situations or when using the following library functions:

• Direct calls tostrerror() must be avoided: userrd_strerror() instead, it provides a
per-thread error message.

• The getpw* , getgr* , gethost* function families (and some moreget* functions) are not
thread-safe: use the *_r variants

• Time functions:asctime , ctime , gmtime , localtime : use *_r variants

• strtok : usestrtok_r

• tmpnam: usetmpnam_r

• Many others (lookup documentation)

• A header file namedrrd_is_thread_safe.h is provided that works with theGNU C−preprocessor to
‘‘ poison’’ some of the most common non-thread-safe functions using the#pragma GCC poison
directive. Just include this header in source files you want to keep thread-safe.

• Do not introduce global variables!

If you really, really have to use a global variable you may add a new field to therrd_context
structure and modifyrrd_error.c, rrd_thread_safe.c andrrd_non_thread_safe.c

• Do not usegetopt or getopt_long in *_r (neither directly nor indirectly).

getopt uses global variables and behaves badly in a multi-threaded application when called
concurrently. Instead provide a *_r function taking all options as function parameters. You may
provide argc and **argv arguments for variable length argument lists. Seerrd_update_r as an
example.

1.5.4 2012-09-11 1

RRDTHREADS(1) rrdtool RRDTHREADS(1)

• Do not use therrd_parsetime function!

It uses lots of global variables. You may use it in functions not designed to be thread-safe, like in
functions wrapping the_r version of some operation (e.g.,rrd_create , but not in
rrd_create_r)

CURRENTLY IMPLEMENTED THREAD SAFE FUNCTIONS
Currently there exist thread-safe variants ofrrd_update , rrd_create , rrd_dump , rrd_info ,
rrd_last , and rrd_fetch .

AUTHOR
Peter Stamfest <peter@stamfest.at>

1.5.4 2012-09-11 2

