
librrd(3) rrdtool librrd(3)

NAME
librrd − RRD library functions

DESCRIPTION
librrd contains most of the functionality inRRDTool. The command line utilities and language bindings
are often just wrappers around the code contained inlibrrd .

This manual page documents thelibrrd API.

NOTE: This document is a work in progress, and should be considered incomplete as long as this warning
persists. For more information about thelibrrd functions, always consult the source code.

CORE FUNCTIONS
rrd_dump_cb_r(char *filename, int opt_header, rrd_output_callback_t cb, void *user)

In some situations it is necessary to get the output ofrrd_dump without writing it to a file or the
standard output. In such cases an application can askrrd_dump_cb_r to call an user-defined function
each time there is output to be stored somewhere. This can be used, to e.g. directly feed anXML parser
with the dumped output or transfer the resulting string in memory.

The arguments forrrd_dump_cb_r are the same as forrrd_dump_opt_r except that the output
filename parameter is replaced by the user-defined callback function and an additional parameter for
the callback function that is passed untouched, i.e. to store information about the callback state needed
for the user-defined callback to function properly.

Recent versions ofrrd_dump_opt_r internally use this callback mechanism to write their output to
the file provided by the user.

size_t rrd_dump_opt_cb_fileout(
const void *data,
size_t len,
void *user)

{
return fwrite(data, 1, len, (FILE *)user);

}

The associated call forrrd_dump_cb_r looks like

res = rrd_dump_cb_r(filename, opt_header,
rrd_dump_opt_cb_fileout, (void *)out_file);

where the last parameter specifies the file handlerrd_dump_opt_cb_fileout should write to. There’s
no specific condition for the callback to detect when it is called for the first time, nor for the last time.
If you require this for initialization and cleanup you should do those tasks before and after calling
rrd_dump_cr_r respectively.

rrd_fetch_cb_register(rrd_fetch_cb_t c)
If your data does not reside in rrd files, but you would like to draw charts using the rrd_graph
functionality, you can supply your own rrd_fetch function and register it using the
rrd_fetch_cb_register function.

The argument signature and api must be the same of the callback function must be aequivalent to the
on of rrd_fetch_fn in rrd_fetch.c.

To activate the callback function you can use the pseudo filenamecb//free_form_text.

Note that rrdtool graph will not ask the same rrd for data twice. It determines this by building a key out
of the values supplied to the fetch function. If the values are the same, the previous answer will be
used.

UTILITY FUNCTIONS
rrd_random()

Generates random numbers just like random(). This further ensures that the random number generator
is seeded exactly once per process.

1.6.0 2016-04-19 1

librrd(3) rrdtool librrd(3)

rrd_strtodbl
an rrd aware string to double converter which sets rrd_error in if there is a problem and uses the return
code exclusively for conversion status reporting.

rrd_strtod
works like normal strtod, but it is locale independent (and thread safe)

rrd_snprintf
works like normal snprintf but it is locale independent (and thread safe)

rrd_add_ptr(void ***dest, size_t *dest_size, void *src)
Dynamically resize the array pointed to bydest . dest_size is a pointer to the current size of
dest . Upon successfulrealloc(), thedest_size is incremented by 1 and thesrc pointer is stored
at the end of the newdest . Returns 1 on success, 0 on failure.

type **arr = NULL;
type *elem = "whatever";
size_t arr_size = 0;
if (!rrd_add_ptr(&arr, &arr_size, elem))

handle_failure();

rrd_add_ptr_chunk(void ***dest, size_t *dest_size, void *src, size_t *alloc, size_t chunk)
Like rrd_add_ptr , except the destination is allocated in chunks ofchunk . alloc points to the
number of entries allocated, whereasdest_size points to the number of valid pointers.If more
pointers are needed,chunk pointers are allocated andalloc is increased accordingly. alloc must
be >=dest_size .

This method improves performance on hosts with expensive realloc() .

rrd_add_strdup(char ***dest, size_t *dest_size, char *src)
Like rrd_add_ptr , except adds astrdup of the source string.

char **arr = NULL;
size_t arr_size = NULL;
char *str = " example text";
if (!rrd_add_strdup(&arr, &arr_size, str))

handle_failure();

rrd_add_strdup_chunk(char ***dest, size_t *dest_size, char *src, size_t *alloc, size_t chunk)
Like rrd_add_strdup , except the destination is allocated in chunks ofchunk . alloc points to
the number of entries allocated, whereasdest_size points to the number of valid pointers. If more
pointers are needed,chunk pointers are allocated andalloc is increased accordingly. alloc must
be >=dest_size .

rrd_free_ptrs(void ***src, size_t *cnt)
Free an array of pointers allocated byrrd_add_ptr or rrd_add_strdup . Also frees the array
pointer itself. On return, the source pointer will beNULL and the count will be zero.

/* created as above */
rrd_free_ptrs(&arr, &arr_size);
/* here, arr == NULL && arr_size == 0 */

rrd_mkdir_p(const char *pathname, mode_t mode)
Create the directory namedpathname including all of its parent directories (similar tomkdir −p
on the command line − seemkdir (1) for more information). The argument mode specifies the
permissions to use. It is modified by the process’sumask. Seemkdir (2) for more details.

The function returns 0 on success, a negative value else. In case of an error, errno is set accordingly.
Aside from the errors documented inmkdir (2), the function may fail with the following errors:

1.6.0 2016-04-19 2

librrd(3) rrdtool librrd(3)

EINVAL
pathname is NULLor the empty string.

ENOMEM
Insufficient memory was available.

any error returned by stat (2)

In contrast tomkdir (2), the function doesnot fail if pathname already exists and is a directory.

rrd_scaled_duration (const char * token, unsigned long divisor, unsigned long * valuep)
Parse a token in a context where it contains a count (of seconds orPDP instances), or a duration that
can be converted to a count by representing the duration in seconds and dividing by some scaling
factor. For example, if a user would natively express a 3 day archive of samples collected every 2
minutes, the sample interval can be represented by2m instead of120 , and the archive duration by3d
(to be divided by 120) instead of2160 (3*24*60*60 / 120). See more examples in ‘‘STEP,
HEARTBEAT, and Rows As Durations’’ in r rdcreate.

token must be a number with an optional single-character suffix encoding the scaling factor:

s indicates seconds

m indicates minutes. The value is multiplied by 60.

h indicates hours. The value is multiplied by 3600 (or60m).

d indicates days. The value is multiplied by 86400 (or24h).

w indicates weeks. The value is multiplied by 604800 (or7d).

M indicates months. The value is multiplied by 2678400 (or31d). (Notethis factor accommodates
the maximum number of days in a month.)

y indicates years. The value is multiplied by 31622400 (or366d). (Note this factor
accommodates leap years.)

divisor is a positive value representing the duration in seconds of an interval that the desired result
counts.

valuep is a pointer to where the decoded value will be stored if the conversion is successful.

The initial characters oftoken must be the base−10 representation of a positive integer, or the
conversion fails.

If the remaindertoken is empty (no suffix), it is a count and no scaling is performed.

If token has one of the suffixes above, the count is multiplied to convert it to a duration in seconds.
The resulting number of seconds is divided bydivisor to produce a count of intervals each of
durationdivisor seconds. Ifdivision would produce a remainder (e.g.,5m (300 seconds) divided
by 90s), the conversion is invalid.

If token has unrecognized trailing characters the conversion fails.

The function returns a null pointer if the conversion was successful andvaluep has been updated to
the scaled value. Onfailure, it returns a text diagnostic suitable for use in user error messages.

CLIENT FUNCTIONS
The following functions are used to connected to an rrdcached instance, either via a unix or inet address,
and create, update, or gather statistics about a specifiedRRD database file.

All of the following functions are specified in therrd_client.h header file.

rrdc_connect(const char *daemon_addr
Connect to a running rrdcached instance, specified viadaemon_addr .

1.6.0 2016-04-19 3

librrd(3) rrdtool librrd(3)

rrdc_is_connected(const char *daemon_addr)
Return a boolean int to determine if the client is connected to the rrdcache daemon specified by the
daemon_addr parameter.

rrdc_is_any_connected
Return a boolean int if any daemon connections are connected.

rrdc_disconnect
Disconnect gracefully from all present daemon connections.

rrdc_update(const char *filename, int values_num, const char * const *values)
Update theRRD filename via the rrdcached. Wherevalues_num is the number of values to
update andvalues are the new values to add.

rrdc_info(const char *filename)
Grab rrd info of theRRD filename from the connected cache daemon. This function returns an
rrd_info_t structure of the following format:

typedef struct rrd_blob_t {
unsigned long size; /* size of the blob */
unsigned char *ptr; /* pointer */

} r rd_blob_t;

typedef enum rrd_info_type { RD_I_VAL = 0,
RD_I_CNT,
RD_I_STR,
RD_I_INT,
RD_I_BLO

} r rd_info_type_t;

typedef union rrd_infoval {
unsigned long u_cnt;
rrd_value_t u_val;
char *u_str;
int u_int;
rrd_blob_t u_blo;

} r rd_infoval_t;

typedef struct rrd_info_t {
char *key;
rrd_info_type_t type;
rrd_infoval_t value;
struct rrd_info_t *next;

} r rd_info_t;

rrdc_last(const char *filename)
Grab the unix epoch of the last timeRRD filename was updated.

rrdc_first(const char *filename, int rraindex)
Get the first value of the first sample of theRRD filename , of the rraindex RRA (Round Robin
Archive) index number. The RRA index number can be determined by pulling the rrd_info_t off the
RRD.

rrdc_cr eate(const char *filename, unsigned long pdp_step, time_t last_up, int no_overwrite, int ar gc,
const char **argv)

CreateRRD database of pathfilename . The RRD will have a step size ofpfp_step , the unix
epoch timestamp to start collecting data from. The number of data sources and RRAsargc and the
definitions of the data sources and RRAsargv . Lastly whether or not to overwrite an existing RRD if
one is found with the same filename;no_overwrite .

1.6.0 2016-04-19 4

librrd(3) rrdtool librrd(3)

rrdc_cr eate_r2(const char *filename, unsigned long pdp_step, time_t last_up, int no_overwrite, const
char **sources, const char *template, int argc, const char **argv)

Create andRRD database in the daemon.rrdc_create_r2 has the same parameters asrrdc_create
with two added parameters of;sources andtemplate .

wheretemplate is the file path to aRRD file template, with, the form defined inrrdcreate(1),

The sources parameter defines series of file paths with data defined, to prefill theRRD with. See
rrdcreate(1) for more details.

rrdc_flush(const char *filename)
flush the currentlyRRD cached in the daemon specified viafilename .

rrdc_forget(const char *filename)
Drop the cached data for theRRD file specified viafilename .

rrdc_flush_if_daemon(const char *daemon_addr, const char *filename)
Flush the specifiedRRD given by filename only if the daemondaemon_addr is up and
connected.

rrdc_fetch(const char *filename, const char *cf, time_t *ret_start, time_t *ret_end, unsigned long
*ret_step, unsigned long *ret_ds_num, char ***ret_ds_names, rrd_value_t **ret_data)

Perform a fetch operation on the specifiedRRD Database given be filename , where cf is the
consolidation function,ret_start is the start time given by unix epoch,ret_end is the endtime.
ret_step is the step size in seconds,ret_ds_num the number of data sources in theRRD,
ret_ds_names the names of the data sources, and a pointer to an rrd_value_t object to shlep the
data.

rrdc_stats_get(rrdc_stats_t **ret_stats)
Get stats from the connected daemon, via a linked list of the following structure:

struct rrdc_stats_s {
const char *name;
uint16_t type;
#define RRDC_STATS_TYPE_GAUGE 0x0001
#define RRDC_STATS_TYPE_COUNTER 0x0002
uint16_t flags;
union {

uint64_t counter;
double gauge;

} v alue;
struct rrdc_stats_s *next;

};
typedef struct rrdc_stats_s rrdc_stats_t;

rrdc_stats_free(rrdc_stats_t *ret_stats)
Free the stats struct allocated viarrdc_stats_get.

SEE ALSO
rrcached(1) rrdfetch (1) rrdinfo (1) rrdlast (1) rrdcreate(1) rrdupdate (1) rrdlast (1)

AUTHOR
RRD Contributors <rrd−developers@lists.oetiker.ch>

1.6.0 2016-04-19 5

