
RRDCREATE(1) rrdtool RRDCREATE(1)

NAME
rrdcreate − Set up a new Round Robin Database

SYNOPSIS
rrdtool cr eate filename [−−start|−b start time] [−−step|−sstep] [−−template|−t template-file]
[−−source|−r source-file] [−−no−overwrite |−O] [−−daemon|−d address] [DS:ds-name[=mapped-ds-
name[[source-index]]] :DST:dst arguments] [RRA:CF:cf arguments]

DESCRIPTION
The create function of RRDtool lets you set up new Round Robin Database (RRD) files. Thefile is created
at its final, full size and filled with*UNKNOWN* data, unless one or more sourceRRD files have been
specified and they hold suitable data to ‘‘pre-fill’’ the newRRD file.

filename
The name of theRRD you want to create.RRD files should end with the extension.rrd. Howev er, RRDtool
will accept any filename.

−−start|−b start time(default: now − 10s)
Specifies the time in seconds since 1970−01−01UTC when the first value should be added to theRRD.
RRDtool will not accept any data timed before or at the time specified.

See also AT-STYLE TIME SPECIFICATION section in therrdfetchdocumentation for other ways to specify
time.

If one or more source files is used to pre-fill the new RRD, the−−start option may be omitted. In that case,
the latest update time among all source files will be used as the last update time of the new RRD file,
effectively setting the start time.

−−step|−sstep(default: 300 seconds)
Specifies the base interval in seconds with which data will be fed into theRRD. A scaling factor may be
present as a suffix to the integer; see ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

−−no−overwrite|−O
Do not clobber an existing file of the same name.

−−daemon|−daddress
Address of the rrdcached daemon.For a list of accepted formats, see the−l option in the rrdcached manual.

rrdtool create −−daemon unix:/var/run/rrdcached.sock /var/lib/rrd/foo.rrd I<other options>

[−−template|−t template-file]
Specifies a templateRRD file to take step, DS and RRA definitions from. This allows one to base the
structure of a new file on some existing file. The data of the template file isNOT used for pre-filling, but it is
possible to specify the same file as a source file (see below).

Additional DS andRRA definitions are permitted, and will be added to those taken from the template.

−−source|−rsource-file
One or more sourceRRD files may be named on the command line. Data from these source files will be
used to prefill the createdRRD file. The output file and one source file may refer to the same file name. This
will effectively replace the source file with the new RRD file. While there is the danger to loose the source
file because it gets replaced, there is no danger that the source and the new file may be ‘‘garbled’’ together
at any point in time, because the new file will always be created as a temporary file first and will only be
moved to its final destination once it has been written in its entirety.

Prefilling is done by matching upDS names, RRAs and consolidation functions and choosing the best
available data resolution when doing so. Prefilling may not be mathematically correct in all cases (eg. if
resolutions have to change due to changed stepping of the target RRD and old and new resolutions do not
match up with old/new bin boundaries in RRAs).

In other words: A best effort is made to preserve data during prefilling. Also, pre-filling of RRAs may only
be possible for certain kinds ofDS types. Prefilling may also have strange effects on Holt-Winters
forecasting RRAs. In other words: there is no guarantee for data-correctness.

1.5.4 2015-11-10 1

RRDCREATE(1) rrdtool RRDCREATE(1)

When ‘‘pre-filling’ ’ a RRD file, the structure of the new file must be specified as usual usingDS andRRA
specifications as outlined below. Data will be taken from source files based onDS names and types and in
the order the source files are specified in. Data sources with the same name from different source files will
be combined to form a new data source. Generally, for any point in time the new RRD file will cover after
its creation, data from only one source file will have been used for pre-filling. However, data from multiple
sources may be combined if it refers to different times or an earlier named source file holds unknown data
for a time where a later one holds known data.

If this automatic data selection is not desired, theDS syntax allows one to specify a mapping of target and
source data sources for prefilling. This syntax allows one to rename data sources and to restrict prefilling
for aDS to only use data from a single source file.

Prefilling currently only works reliably for RRAs using one of the classic consolidation functions, that is
one of:AVERAGE, MIN, MAX, LAST. It might also currently have problems withCOMPUTEdata sources.

Note that the act of prefilling duringcreate is similar to a lot of the operations available via thetune
command, but usingcreatesyntax.

DS:ds-name[=mapped-ds-name[[source-index]]]: DST:dst arguments
A single RRD can accept input from several data sources (DS), for example incoming and outgoing traffic
on a specific communication line. With theDS configuration option you must define some basic properties
of each data source you want to store in theRRD.

ds-nameis the name you will use to reference this particular data source from anRRD. A ds-namemust be
1 to 19 characters long in the characters [a−zA−Z0−9_].

DST defines the Data Source Type. The remaining arguments of a data source entry depend on the data
source type. For GAUGE, COUNTER, DERIVE, DCOUNTER, DDERIVEandABSOLUTE the format for a data
source entry is:

DS:ds-name:{ GAUGE| COUNTER| DERIVE| DCOUNTER| DDERIVE| ABSOLUTE} :heartbeat:min:max

For COMPUTEdata sources, the format is:

DS:ds-name:COMPUTE:rpn-expression

In order to decide which data source type to use, review the definitions that follow. Also consult the section
on ‘‘HOW TO MEASURE’’ for further insight.

GAUGE
is for things like temperatures or number of people in a room or the value of a RedHat share.

COUNTER
is for continuous incrementing counters like the ifInOctets counter in a router. The COUNTER data
source assumes that the counter never decreases, except when a counter overflows. The update
function takes the overflow into account. The counter is stored as a per-second rate. When the counter
overflows, RRDtool checks if the overflow happened at the 32bit or 64bit border and acts accordingly
by adding an appropriate value to the result.

DCOUNTER
the same asCOUNTER, but for quantities expressed as double-precision floating point number. Could
be used to track quantities that increment by non-integer numbers, i.e. number of seconds that some
routine has taken to run, total weight processed by some technology equipment etc.The only
substantial difference is thatDCOUNTER can either be upward counting or downward counting, but
not both at the same time. The current direction is detected automatically on the second non-
undefined counter update and any further change in the direction is considered a reset. The new
direction is determined and locked in by the second update after reset and its difference to the value at
reset.

DERIVE
will store the derivative of the line going from the last to the current value of the data source. This can
be useful for gauges, for example, to measure the rate of people entering or leaving a room. Internally,
derive works exactly like COUNTERbut without overflow checks. So if your counter does not reset at

1.5.4 2015-11-10 2

RRDCREATE(1) rrdtool RRDCREATE(1)

32 or 64 bit you might want to useDERIVE and combine it with aMIN value of 0.

DDERIVE
the same asDERIVE , but for quantities expressed as double-precision floating point number.

NOTE on COUNTER vs DERIVE

by Don Baarda <don.baarda@baesystems.com>

If you cannot tolerate ever mistaking the occasional counter reset for a legitimate counter wrap, and
would prefer ‘‘Unknowns’’ f or all legitimate counter wraps and resets, always useDERIVE with
min=0. Otherwise, usingCOUNTER with a suitable max will return correct values for all legitimate
counter wraps, mark some counter resets as ‘‘Unknown’’, but can mistake some counter resets for a
legitimate counter wrap.

For a 5 minute step and 32−bit counter, the probability of mistaking a counter reset for a legitimate
wrap is arguably about 0.8% per 1Mbps of maximum bandwidth. Note that this equates to 80% for
100Mbps interfaces, so for high bandwidth interfaces and a 32bit counter, DERIVE with min=0 is
probably preferable. If you are using a 64bit counter, just about any max setting will eliminate the
possibility of mistaking a reset for a counter wrap.

ABSOLUTE
is for counters which get reset upon reading. This is used for fast counters which tend to overflow. So
instead of reading them normally you reset them after every read to make sure you have a maximum
time available before the next overflow. Another usage is for things you count like number of
messages since the last update.

COMPUTE
is for storing the result of a formula applied to other data sources in theRRD. This data source is not
supplied a value on update, but rather its Primary Data Points (PDPs) are computed from the PDPs of
the data sources according to the rpn-expression that defines the formula. Consolidation functions are
then applied normally to the PDPs of theCOMPUTE data source (that is the rpn-expression is only
applied to generate PDPs). In database software, such data sets are referred to as ‘‘virtual’ ’ or
‘‘ computed’’ columns.

heartbeatdefines the maximum number of seconds that may pass between two updates of this data source
before the value of the data source is assumed to be*UNKNOWN*.

min andmaxdefine the expected range values for data supplied by a data source. Ifmin and/ormaxare
specified any value outside the defined range will be regarded as*UNKNOWN*. If you do not know or care
about min and max, set them to U for unknown. Note that min and max always refer to the processed
values of theDS. For a traffic−COUNTER type DS this would be the maximum and minimum data-rate
expected from the device.

If information on minimal/maximal expected values is available, always set the min and/or max properties.
This will help RRDtool in doing a simple sanity check on the data supplied when running update.

rpn-expressiondefines the formula used to compute the PDPs of aCOMPUTEdata source from other data
sources in the same <RRD>. It is similar to defining aCDEF argument for the graph command. Please refer
to that manual page for a list and description ofRPNoperations supported. For COMPUTEdata sources, the
following RPN operations are not supported:COUNT, PREV, TIME, andLTIME. In addition, in defining the
RPN expression, theCOMPUTEdata source may only refer to the names of data source listed previously in
the create command. This is similar to the restriction thatCDEFs must refer only toDEFs and CDEFs
previously defined in the same graph command.

When pre-filling the new RRD file using one or more sourceRRDs, theDS specification may hold an
optional mapping after theDS name. This takes the form of an equal sign followed by a mapped-toDS
name and an optional source index enclosed in square brackets.

For example, theDS

DS:a=b[2]:GAUGE:120:0:U

1.5.4 2015-11-10 3

RRDCREATE(1) rrdtool RRDCREATE(1)

specifies that theDS nameda should be pre-filled from theDS namedb in the second listed source file
(source indices are 1−based).

RRA:CF:cf arguments
The purpose of anRRD is to store data in the round robin archives (RRA). An archive consists of a number
of data values or statistics for each of the defined data-sources (DS) and is defined with anRRA line.

When data is entered into anRRD, it is first fit into time slots of the length defined with the−s option, thus
becoming aprimary data point.

The data is also processed with the consolidation function (CF) of the archive. There are several
consolidation functions that consolidate primary data points via an aggregate function:AVERAGE, MIN ,
MAX , LAST .

AVERAGE
the average of the data points is stored.

MIN
the smallest of the data points is stored.

MAX
the largest of the data points is stored.

LAST
the last data points is used.

Note that data aggregation inevitably leads to loss of precision and information. The trick is to pick the
aggregate function such that theinterestingproperties of your data is kept across the aggregation process.

The format ofRRA line for these consolidation functions is:

RRA:{ AVERAGE| MIN | MAX | LAST} :xff:steps:rows

xff The xfiles factor defines what part of a consolidation interval may be made up from*UNKNOWN* data
while the consolidated value is still regarded as known. It is given as the ratio of allowed *UNKNOWN*
PDPs to the number of PDPs in the interval. Thus, it ranges from 0 to 1 (exclusive).

stepsdefines how many of theseprimary data pointsare used to build aconsolidated data pointwhich then
goes into the archive. See also ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

rows defines how many generations of data values are kept in anRRA. Obviously, this has to be greater
than zero. See also ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

Aberrant Behavior Detection with Holt-Winters Forecasting
In addition to the aggregate functions, there are a set of specialized functions that enableRRDtool to
provide data smoothing (via the Holt-Winters forecasting algorithm), confidence bands, and the flagging
aberrant behavior in the data source time series:

• RRA:HWPREDICT:rows:alpha:beta:seasonal period[:rra-num]

• RRA:MHWPREDICT:rows:alpha:beta:seasonal period[:rra-num]

• RRA:SEASONAL:seasonal period:gamma:rra-num[:smoothing−window=fraction]

• RRA:DEVSEASONAL:seasonal period:gamma:rra-num[:smoothing−window=fraction]

• RRA:DEVPREDICT:rows:rra-num

• RRA:FAILURES:rows:threshold:window length:rra-num

TheseRRAs differ from the true consolidation functions in several ways. First,each of theRRAs is
updated once for every primary data point. Second, theseRRAs are interdependent. To generate real-time
confidence bounds, a matched set ofSEASONAL, DEVSEASONAL, DEVPREDICT, and eitherHWPREDICT
or MHWPREDICTmust exist. Generating smoothed values of the primary data points requires aSEASONAL
RRA and either anHWPREDICTor MHWPREDICT RRA. Aberrant behavior detection requiresFAILURES,
DEVSEASONAL, SEASONAL,and eitherHWPREDICTor MHWPREDICT.

The predicted, or smoothed, values are stored in theHWPREDICTor MHWPREDICTRRA. HWPREDICTand

1.5.4 2015-11-10 4

RRDCREATE(1) rrdtool RRDCREATE(1)

MHWPREDICT are actually two variations on the Holt-Winters method. They are interchangeable. Both
attempt to decompose data into three components: a baseline, a trend, and a seasonal coefficient.
HWPREDICT adds its seasonal coefficient to the baseline to form a prediction, whereasMHWPREDICT
multiplies its seasonal coefficient by the baseline to form a prediction. The difference is noticeable when
the baseline changes significantly in the course of a season;HWPREDICTwill predict the seasonality to stay
constant as the baseline changes, but MHWPREDICT will predict the seasonality to grow or shrink in
proportion to the baseline. The proper choice of method depends on the thing being modeled. For
simplicity, the rest of this discussion will refer toHWPREDICT,but MHWPREDICTmay be substituted in its
place.

The predicted deviations are stored inDEVPREDICT (think a standard deviation which can be scaled to
yield a confidence band). TheFAILURES RRA stores binary indicators. A 1 marks the indexed observation
as failure; that is, the number of confidence bounds violations in the preceding window of observations met
or exceeded a specified threshold. An example of using theseRRAs to graph confidence bounds and
failures appears in rrdgraph.

TheSEASONALandDEVSEASONALRRAs store the seasonal coefficients for the Holt-Winters forecasting
algorithm and the seasonal deviations, respectively. There is one entry per observation time point in the
seasonal cycle. For example, if primary data points are generated every five minutes and the seasonal cycle
is 1 day, both SEASONALandDEVSEASONALwill have 288 rows.

In order to simplify the creation for the novice user, in addition to supporting explicit creation of the
HWPREDICT, SEASONAL, DEVPREDICT, DEVSEASONAL, and FAILURES RRAs, the RRDtool create
command supports implicit creation of the other four whenHWPREDICT is specified alone and the final
argumentrra-num is omitted.

rows specifies the length of theRRA prior to wrap around. Remember that there is a one-to-one
correspondence between primary data points and entries in these RRAs. For theHWPREDICT CF, rows
should be larger than theseasonal period. If the DEVPREDICT RRA is implicitly created, the default
number of rows is the same as theHWPREDICTrowsargument. If theFAILURES RRA is implicitly created,
rowswill be set to theseasonal periodargument of theHWPREDICTRRA. Of course, theRRDtool resize
command is available if these defaults are not sufficient and the creator wishes to avoid explicit creations of
the other specialized functionRRAs.

seasonal periodspecifies the number of primary data points in a seasonal cycle. If SEASONAL and
DEVSEASONAL are implicitly created, this argument for thoseRRAs is set automatically to the value
specified byHWPREDICT. If they are explicitly created, the creator should verify that all threeseasonal
periodarguments agree.

alpha is the adaption parameter of the intercept (or baseline) coefficient in the Holt-Winters forecasting
algorithm. See rrdtool for a description of this algorithm.alphamust lie between 0 and 1. A value closer to
1 means that more recent observations carry greater weight in predicting the baseline component of the
forecast. A value closer to 0 means that past history carries greater weight in predicting the baseline
component.

beta is the adaption parameter of the slope (or linear trend) coefficient in the Holt-Winters forecasting
algorithm.betamust lie between 0 and 1 and plays the same role asalpha with respect to the predicted
linear trend.

gammais the adaption parameter of the seasonal coefficients in the Holt-Winters forecasting algorithm
(HWPREDICT) or the adaption parameter in the exponential smoothing update of the seasonal deviations. It
must lie between 0 and 1. If theSEASONAL and DEVSEASONAL RRAs are created implicitly, they will
both have the same value forgamma: the value specified for theHWPREDICTalpha argument. Note that
because there is one seasonal coefficient (or deviation) for each time point during the seasonal cycle, the
adaptation rate is much slower than the baseline. Each seasonal coefficient is only updated (or adapts) when
the observed value occurs at the offset in the seasonal cycle corresponding to that coefficient.

If SEASONAL and DEVSEASONAL RRAs are created explicitly, gammaneed not be the same for both.
Note thatgammacan also be changed via theRRDtool tunecommand.

1.5.4 2015-11-10 5

RRDCREATE(1) rrdtool RRDCREATE(1)

smoothing-windowspecifies the fraction of a season that should be averaged around each point. By default,
the value ofsmoothing-windowis 0.05, which means each value inSEASONALandDEVSEASONALwill be
occasionally replaced by averaging it with its (seasonal period*0.05) nearest neighbors.Setting
smoothing-windowto zero will disable the running-average smoother altogether.

rra-num provides the links between relatedRRAs. If HWPREDICT is specified alone and the otherRRAs
are created implicitly, then there is no need to worry about this argument. IfRRAs are created explicitly,
then carefully pay attention to this argument. For eachRRA which includes this argument, there is a
dependency between thatRRA and anotherRRA. The rra-numargument is the 1−based index in the order
of RRA creation (that is, the order they appear in thecreatecommand). The dependentRRA for eachRRA
requiring therra-numargument is listed here:

• HWPREDICTrra-num is the index of theSEASONALRRA.

• SEASONALrra-num is the index of theHWPREDICTRRA.

• DEVPREDICTrra-num is the index of theDEVSEASONALRRA.

• DEVSEASONALrra-num is the index of theHWPREDICTRRA.

• FAILURES rra-num is the index of theDEVSEASONALRRA.

thresholdis the minimum number of violations (observed values outside the confidence bounds) within a
window that constitutes a failure. If theFAILURESRRA is implicitly created, the default value is 7.

window lengthis the number of time points in the window. Specify an integer greater than or equal to the
threshold and less than or equal to 28.The time interval this window represents depends on the interval
between primary data points. If theFAILURESRRA is implicitly created, the default value is 9.

STEP, HEARTBEAT, and Rows As Durations
Traditionally RRDtool specifiedPDP intervals in seconds, and most other values as either seconds orPDP
counts. Thismade the specification for databases rather opaque; for example

rrdtool create power.rrd \
−−start now−2h −−step 1 \
DS:watts:GAUGE:300:0:24000 \
RRA:AVERAGE:0.5:1:864000 \
RRA:AVERAGE:0.5:60:129600 \
RRA:AVERAGE:0.5:3600:13392 \
RRA:AVERAGE:0.5:86400:3660

creates a database of power values collected once per second, with a five minute (300 second) heartbeat,
and fourRRAs: ten days of one second, 90 days of one minute, 18 months of one hour, and ten years of one
day averages.

Step, heartbeat, andPDP counts and rows may also be specified as durations, which are positive integers
with a single-character suffix that specifies a scaling factor. See ‘‘rrd_scaled_duration’’ in l ibrrd for scale
factors of the supported suffixes:s (seconds),m(minutes),h (hours),d (days),w (weeks),M(months), and
y (years).

Scaled step and heartbeat values (which are natively durations in seconds) are used directly, while
consolidation function row arguments are divided by their step to produce the number of rows.

With this feature the same specification as above can be written as:

rrdtool create power.rrd \
−−start now−2h −−step 1s \
DS:watts:GAUGE:5m:0:24000 \
RRA:AVERAGE:0.5:1s:10d \
RRA:AVERAGE:0.5:1m:90d \
RRA:AVERAGE:0.5:1h:18M \
RRA:AVERAGE:0.5:1d:10y

1.5.4 2015-11-10 6

RRDCREATE(1) rrdtool RRDCREATE(1)

The HEARTBEAT and the STEP
Here is an explanation by Don Baarda on the inner workings of RRDtool. It may help you to sort out why
all this *UNKNOWN* data is popping up in your databases:

RRDtool gets fed samples/updates at arbitrary times. From these it builds Primary Data Points (PDPs) on
ev ery ‘‘step’’ i nterval. The PDPs are then accumulated into the RRAs.

The ‘‘heartbeat’’ defines the maximum acceptable interval between samples/updates. If the interval between
samples is less than ‘‘heartbeat’’, then an average rate is calculated and applied for that interval. If the
interval between samples is longer than ‘‘heartbeat’’, then that entire interval is considered ‘‘unknown’’.
Note that there are other things that can make a sample interval ‘‘unknown’’, such as the rate exceeding
limits, or a sample that was explicitly marked as unknown.

The known rates during aPDP’s ‘‘step’’ i nterval are used to calculate an average rate for thatPDP. If the
total ‘‘unknown’’ t ime accounts for more thanhalf the ‘‘step’’, the entirePDP is marked as ‘‘unknown’’.
This means that a mixture of known and ‘‘unknown’’ sample times in a singlePDP‘‘ step’’ may or may not
add up to enough ‘‘known’’ t ime to warrant a knownPDP.

The ‘‘heartbeat’’ can be short (unusual) or long (typical) relative to the ‘‘step’’ i nterval between PDPs. A
short ‘‘heartbeat’’ means you require multiple samples perPDP,and if you don’t get them mark thePDP
unknown. A long heartbeat can span multiple ‘‘steps’’, which means it is acceptable to have multiple PDPs
calculated from a single sample. An extreme example of this might be a ‘‘step’’ of 5 minutes and a
‘‘ heartbeat’’ of one day, in which case a single sample every day will result in all the PDPs for that entire
day period being set to the same average rate.−− Don Baarda <don.baarda@baesystems.com>

time|
axis|

begin_ _|00|
|01|

u|02|−−−−* sample1, restart "hb"−timer
u|03| /
u|04| /
u|05| /
u|06|/ "hbt" expired
u|07|

|08|−−−−* sample2, restart "hb"
|09| /
|10| /

u|11|−−−−* sample3, restart "hb"
u|12| /
u|13| /

step1_u|14| /
u|15|/ "swt" expired
u|16|

|17|−−−−* sample4, restart "hb", create "pdp" for step1 =
|18| / = unknown due to 10 "u" labled secs > 0.5 * step
|19| /
|20| /
|21|−−−−* sample5, restart "hb"
|22| /
|23| /
|24|−−−−* sample6, restart "hb"
|25| /
|26| /
|27|−−−−* sample7, restart "hb"

step2_ _|28| /
|22| /

1.5.4 2015-11-10 7

RRDCREATE(1) rrdtool RRDCREATE(1)

|23|−−−−* sample8, restart "hb", create "pdp" for step1, create "cdp"
|24| /
|25| /

graphics byvladimir.lavrov@desy.de.

HOW TO M EASURE
Here are a few hints on how to measure:

Temperature
Usually you have some type of meter you can read to get the temperature.The temperature is not
really connected with a time. The only connection is that the temperature reading happened at a certain
time. You can use theGAUGE data source type for this. RRDtool will then record your reading
together with the time.

Mail Messages
Assume you have a method to count the number of messages transported by your mail server in a
certain amount of time, giving you data like ’5 messages in the last 65 seconds’. If you look at the
count of 5 like an ABSOLUTE data type you can simply update theRRD with the number 5 and the
end time of your monitoring period. RRDtool will then record the number of messages per second. If
at some later stage you want to know the number of messages transported in a day, you can get the
av erage messages per second from RRDtool for the day in question and multiply this number with the
number of seconds in a day. Because all math is run with Doubles, the precision should be acceptable.

It’s always a Rate
RRDtool stores rates in amount/second forCOUNTER, DERIVE, DCOUNTER, DDERIVEand
ABSOLUTE data. Whenyou plot the data, you will get on the y axis amount/second which you might
be tempted to convert to an absolute amount by multiplying by the delta-time between the points.
RRDtool plots continuous data, and as such is not appropriate for plotting absolute amounts as for
example ‘‘total bytes’’ sent and received in a router. What you probably want is plot rates that you can
scale to bytes/hour, for example, or plot absolute amounts with another tool that draws bar-plots,
where the delta-time is clear on the plot for each point (such that when you read the graph you see for
exampleGB on the y axis, days on the x axis and one bar for each day).

EXAMPLE
rrdtool create temperature.rrd −−step 300 \

DS:temp:GAUGE:600:−273:5000 \
RRA:AVERAGE:0.5:1:1200 \
RRA:MIN:0.5:12:2400 \
RRA:MAX:0.5:12:2400 \
RRA:AVERAGE:0.5:12:2400

This sets up anRRD calledtemperature.rrd which accepts one temperature value every 300 seconds. If no
new data is supplied for more than 600 seconds, the temperature becomes*UNKNOWN*. The minimum
acceptable value is −273 and the maximum is 5’000.

A few archive areas are also defined. The first stores the temperatures supplied for 100 hours (1’200 * 300
seconds = 100 hours). The secondRRA stores the minimum temperature recorded over every hour (12 *
300 seconds = 1 hour), for 100 days (2’400 hours). The third and the fourthRRA’s do the same for the
maximum and average temperature, respectively.

EXAMPLE 2
rrdtool create monitor.rrd −−step 300 \

DS:ifOutOctets:COUNTER:1800:0:4294967295 \
RRA:AVERAGE:0.5:1:2016 \
RRA:HWPREDICT:1440:0.1:0.0035:288

This example is a monitor of a router interface. The firstRRA tracks the traffic flow in octets; the second
RRA generates the specialized functionsRRAs for aberrant behavior detection. Note that therra-num
argument ofHWPREDICT is missing, so the otherRRAs will implicitly be created with default parameter

1.5.4 2015-11-10 8

RRDCREATE(1) rrdtool RRDCREATE(1)

values. In this example, the forecasting algorithm baseline adapts quickly; in fact the most recent one hour
of observations (each at 5 minute intervals) accounts for 75% of the baseline prediction. The linear trend
forecast adapts much more slowly. Observations made during the last day (at 288 observations per day)
account for only 65% of the predicted linear trend. Note: these computations rely on an exponential
smoothing formula described in theLISA 2000paper.

The seasonal cycle is one day (288 data points at 300 second intervals), and the seasonal adaption
parameter will be set to 0.1. TheRRD file will store 5 days (1’440 data points) of forecasts and deviation
predictions before wrap around. The file will store 1 day (a seasonal cycle) of 0−1 indicators in the
FAILURESRRA.

The sameRRD file and RRAs are created with the following command, which explicitly creates all
specialized functionRRAs using ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

rrdtool create monitor.rrd −−step 5m \
DS:ifOutOctets:COUNTER:30m:0:4294967295 \
RRA:AVERAGE:0.5:1:2016 \
RRA:HWPREDICT:5d:0.1:0.0035:1d:3 \
RRA:SEASONAL:1d:0.1:2 \
RRA:DEVSEASONAL:1d:0.1:2 \
RRA:DEVPREDICT:5d:5 \
RRA:FAILURES:1d:7:9:5

Of course, explicit creation need not replicate implicit create, a number of arguments could be changed.

EXAMPLE 3
rrdtool create proxy.rrd −−step 300 \

DS:Requests:DERIVE:1800:0:U \
DS:Duration:DERIVE:1800:0:U \
DS:AvgReqDur:COMPUTE:Duration,Requests,0,EQ,1,Requests,IF,/ \
RRA:AVERAGE:0.5:1:2016

This example is monitoring the average request duration during each 300 sec interval for requests processed
by a web proxy during the interval. In this case, the proxy exposes two counters, the number of requests
processed since boot and the total cumulative duration of all processed requests. Clearly these counters both
have some rollover point, but using theDERIVE data source also handles the reset that occurs when the web
proxy is stopped and restarted.

In the RRD, the first data source stores the requests per second rate during the interval. The second data
source stores the total duration of all requests processed during the interval divided by 300. TheCOMPUTE
data source divides eachPDPof the AccumDuration by the correspondingPDPof TotalRequests and stores
the average request duration. The remainder of theRPNexpression handles the divide by zero case.

AUTHORS
Tobias Oetiker <tobi@oetiker.ch>, Peter Stamfest <peter@stamfest.at>

1.5.4 2015-11-10 9

