Oracle Berkeley DB

Java Collections Tutorial

11g Release 2
Library Version 11.2.5.3

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United States and other
countries.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 9/9/2013

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o] = = Lo \%
Conventions Used in this BOOKcceeiiietiiiieiiiiiieieriiaerererreneerenaeeranaesaaneens \%
FOr More Informationeeieeiirei ittt e et eeneeeeeeerennrenanaesannnanans vi
(00 31 t- Vot 6 e vi
PR 1o T 11 Tt o o T 1
FOATUNES ettt ettt aae 1
Developing a DB Collections ApPlLICAtioNeeeieiiiieeeeieeriineeeeeeerineeeeeesennneeeeaennns 2
Tutorial INtrodUCTIONeeiit ittt e e et e et e reanrerannneaannanans 3
2. The BasiC PrOgram oiiiiueeeiiiiiiieeeeeeerieteeeeeenseeeeeeesnnaseeeessnnsssssesssnnassseesennnnes 6
Defining Serialized Key and Value ClasseS ...ccvveiiiiiiiineeeeeniiieeeeeeenrnneeeerennnnnnes 6
Opening and Closing the Database Environmentccceviiiiiiiiiiiiiiiiiieeeeenennnnns 11
Opening and Closing the Class Catalogciiiviiieiieiiiiiieeeeereniineeeereerneneceeaanns 13
Opening and Closing Databaseseieieiiieeeeeieiiieeeeeeerirneeeesessrnneeeeessnnnseeens 15
Creating Bindings and ColleCtions ...cciueiiiiiiiiiietiiiiiiieeeeeeenrneeeeerenrnneeeeenannns 17
Implementing the Main Programc.cciieiiieeeirriiieeeeresrreeeeeessnnneeesessnnnneeeens 20
USING TranSaCliONS weiiiiiiineeteireiiieteeeeeeieeeeeeeenneeeeeeessnnseesessnnnssseesennnnneeens 23
Adding Database 1temMS ...ueiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeieeeeeeaanaeeeeeecnnnneaeens 25
Retrieving Database [temMSeeiiiiiiiiiiiiiiiiiiiteieiiiiteeeeeaineeeeeeennnesesessennnnes 27
Handling EXCEPLIONS cuuueeiiiiiiiitieieiiieteeeeeireeeeeeaeeneeeeesessnseseesssnnneseseeennes 30
3. Using Secondary INAIiCES .iiiiiirietiiiiiiiiietiieiiieeeeeeenrneeeeeesssnneesesessnnassesessnnnneees 32
Opening Secondary Key INAICES .uviiiiiiiiiiiiiiiiiiieiiiiiieeeeaenineeeeressnneneeeaaanns 32
More Secondary KeY INAIiCES .iiiiiiiueiiiiiiiiiteereiieeeereearneeeesessrneseeeeesnnnneeeees 35
Creating Indexed ColleCtions ..iiiiiiieiiiiiiiiireeieiiiieeeeeeenineeeeeseennseeeesesennnneees 38
Retrieving 1tems by INAeX KeY ciuuriiiiiiiiiiiiiiiiiiiiii it et eeeeiieeeeeraannnnneens 41
4, USING ENTITY Class@S tiiiiiitttiiiiiiettereeiieteeeeeeinaeeeeeessnneeessessnnssessessnnanessesonnnes 45
Defining ENTity ClasseS .uviiiieiireteereiirueeeeeeerreeeeeeeesrneeseessnsnnsseesssnnnsnssesennes 45
Creating Entity Bindings ..ccciiiieiiiiiiiiiiiiiiiiiiiitteieieiieeeeeeenrneseesessnnnnessennnns 49
Creating Collections with Entity Bindingscccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeannnnes 52
Using Entities wWith ColleCtionsciiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeiieeeeeaennnneeeeeanns 53
5. USING TUP S uvtttiiiiiiittetieeiieteeeeeniuneeeesesenneneeseesnneeessessnsasesssssnnnssessesonnnnes 57
Using the TUPLle FOrmMat .iiiiiiieiiiiiiiiiiii ittt eeiiieeeeeeennneeeeeeennnneneesnannes 57
Using Tuples With KeY Creators .iiveeeiiiiiiiieeeieiiiieeeeeeeenneeeeeeesnnnseesesonnnneees 58
Creating Tuple Key Bindings ..iiiiiieeiiiiiiiiieteiiriiieeeeeeeerneeeecsssnnseseeseennneneens 60
Creating Tuple-Serial Entity Bindingscoiviueiiiiiiiiiiiiiiiiiiiieieiiiieeeeeeeennnneess 62
Using Sorted ColleCtioNS c..uveeiiiiiiiiteeiiiiieeeeeeeiineeeeeeessnneeeeesesnnessssennnnanes 65
6. Using Serializable ENTitieseeiiiiiiiieiiiiiiiieereeiiiteeeeeerineseeeesssnnseseessnnnneeeens 67
Using Transient Fields in an Entity Classceiiiiiiiiiiiiiiiiiiiiiiiiieeeieninneeeenanns 67
Using Transient Fields in an Entity Bindingccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeens 71
Removing the Redundant Value ClasSeSiivevireeeiieiiiieneeeeeenineeeeeeeennneeeeananns 73
7 SUMIMIATY tiiiiettteeeeninueeeeeeennneeeeesesnsesessessnnsnesssssnnnsssssessnsasesssssnnnnssseessnnnnes 75
A. APl Notes and Details ...civeeiiiiiiiiiiiiie i eieaetertereaeereaaeerenaeraannesananaeannens 76
Using Data Bindings ..ccviuieiiiiiiiiiiiiiiiiiiteeieiiireeeeeeesnnneeeeeesssnasessessnnnnsasens 76
Selecting Binding FOrmMatsveiiiiiiiiiiiiiiiiiiieieiiiiteeeeeeinneeeeeeennnaeeeens 77
Record NUmMber Bindings .occuuueeeeiiiiiietetiieiiieeeeeeeiineeeeeesennnneeeesennnseeeenns 77
Selecting Data Bindings ..ccceeeiiiiiiiiiiiieieiiieeeereriieeeeeeeennneeeeesensnseeeeeanns 78
Implementing Bindings ...ciiiiieiiiiiiiiiiteeieiiieeeeeeernneeeeeseernneeeeresonnnneens 78

9/9/2013 DB Collections Page iii

USING BiNAINGS weeinutiiiitiiiitieiitteeiteeeieeeeeneeeeaneeeenneeesnaeeesneeesnneeesnness 79

Secondary KeY Creators .uicveeieeeeeieeeereieeeeneerenneeeeneeeesnecessasessnaeeenneens 79
Using the DB Java Collections APlcciuiiiiiiiiiiitiiiiitieiieieiieeeeineeesneeeanneeenns 79
(U1 [a TR I = 1 1Y et d (o] S PN 79
Transaction ROWDACK ...eiiiiiiiiiiiiii it r i e ere e ee e eenaeens 80
Selecting AcCess Methodsueiiiieiiiiiiiiiii i rei i reieeeeneeeanneens 81
Access Method ReStriCiONS .uivvueiiiiiiiiiiiiiiiiiieiieeieeereeeeneeeannaans 82
Using Stored COlleCioNS wii.ueeiiiieiiiitieiieeeiieeeeieeeeneeeanneeeesaeeesnaeessneeesnneens 82
Stored Collection and Access Methodscccviiiiiiiiiiiiiiiiiiiiiieniieeeneeanns 83
Stored Collections Versus Standard Java Collectionsccceevvieiineeennnennn. 84
Other Stored Collection CharacteristiCscievveierieeiriieeeiiieeeeieeeneneeennees 85
Why Java Collections for Berkeley DBcccceiiiiuiiiineiieiieeeineeesneeeanneeenns 86
Serialized ODbJeCt STOrage .iiuviiiiiiiiiiiiii it eii et ereieeeeaeerenaeeeanaeesnneens 87
9/9/2013 DB Collections Page iv

Preface

Welcome to the Berkeley DB (DB) Collections API. This document provides a tutorial

that introduces the collections API. The goal of this document is to provide you with an
efficient mechanism with which you can quickly become efficient with this API. As such, this
document is intended for Java developers and senior software architects who are looking
for transactionally-protected backing of their Java collections. No prior experience with DB
technologies is expected or required.

This document reflects Berkeley DB 11g Release 2, which provides DB library version 11.2.5.3.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment.openDatabase() method returns a Database class object.”

Variable or non-literal text is presented in italics. For example: "Go to your
DB_INSTALLATION_HOME directory.”

Program examples are displayed in a monospaced font on a shaded background. For example:

import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import java.io.File;

// Open the environment. Allow it to be created if it does not already
// exist.
Environment myDbEnvironment;

In situations in this book, programming examples are updated from one chapter to the next
in this book. When this occurs, the new code is presented in monospaced bold font. For
example:

import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import java.io.File;

// Open the environment. Allow it to be created if it does not already
// exist.

Environment myDbEnv;

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);

myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

9/9/2013 DB Collections Page v

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

» Getting Started with Berkeley DB for Java

» Getting Started with Transaction Processing for Java

» Berkeley DB Getting Started with Replicated Applications for Java
» Berkeley DB Programmer's Reference Guide

» Berkeley DB Javadoc

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumiD=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumiD=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

9/9/2013 DB Collections Page vi

http://download.oracle.com/docs/cd/E17076_02/html/gsg/JAVA/BerkeleyDB-Core-JAVA-GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/JAVA/Replication_JAVA_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/java/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Introduction

Features

The DB Java Collections API is a Java framework that extends the well known Java
Collections design pattern such that collections can now be stored, updated and queried in a
transactional manner. The DB Java Collections API is a layer on top of DB.

Together the DB Java Collections API and Berkeley DB provide an embedded data management
solution with all the benefits of a full transactional storage and the simplicity of a well known
Java API. Java programmers who need fast, scalable, transactional data management for their
projects can quickly adopt and deploy the DB Java Collections APl with confidence.

This framework was first known as Greybird DB written by Mark Hayes. Mark collaborated with
us to permanently incorporate his excellent work into our distribution and to support it as an
ongoing part of Berkeley DB and Berkeley DB Java Edition. The repository of source code that
remains at SourceForge at version 0.9.0 is considered the last version before incorporation and
will remain intact but will not be updated to reflect changes made as part of Berkeley DB or
Berkeley DB Java Edition.

Berkeley DB has always provided a Java APl which can be roughly described as a map and
cursor interface, where the keys and values are represented as byte arrays. This APl is a Java
(JNI) interface to the C APl and it closely modeled the Berkeley DB C API's interface. The DB
Java Collections APl is a layer on top of that thin JNI mapping of the C API to Berkeley DB. It
adds significant new functionality in several ways.

» An implementation of the Java Collections interfaces (Map, SortedMap, Set, SortedSet, List
and Iterator) is provided.

« Transactions are supported using the conventional Java transaction-per-thread model,
where the current transaction is implicitly associated with the current thread.

« Transaction runner utilities are provided that automatically perform transaction retry and
exception handling.

» Keys and values are represented as Java objects rather than byte arrays. Bindings are used
to map between Java objects and the stored byte arrays.

» The tuple data format is provided as the simplest data representation, and is useful for keys
as well as simple compact values.

» The serial data format is provided for storing arbitrary Java objects without writing custom
binding code. Java serialization is extended to store the class descriptions separately,
making the data records much more compact than with standard Java serialization.

» Custom data formats and bindings can be easily added. XML data format and XML bindings
could easily be created using this feature, for example.

» The DB Java Collections API insulates the application from minor differences in the use of
the Berkeley DB Data Store, Concurrent Data Store, and Transactional Data Store products.

9/9/2013

DB Collections Page 1

http://download.oracle.com/javase/1.5.0/docs/guide/collections/
http://download.oracle.com/javase/1.5.0/docs/guide/collections/
http://greybird-db.sourceforge.net/

Library Version 11.2.5.3

Introduction

This allows for development with one and deployment with another without significant
changes to code.

Note that the DB Java Collections API does not support caching of programming language
objects nor does it keep track of their stored status. This is in contrast to "persistent object”
approaches such as those defined by ODMG and JDO (JSR 12). Such approaches have benefits
but also require sophisticated object caching. For simplicity the DB Java Collections API treats
data objects by value, not by reference, and does not perform object caching of any kind.
Since the DB Java Collections API is a thin layer, its reliability and performance characteristics
are roughly equivalent to those of Berkeley DB, and database tuning is accomplished in the
same way as for any Berkeley DB database.

Developing a DB Collections Application

There are several important choices to make when developing an application using the DB
Java Collections API.

1.

Choose the Berkeley DB Environment

Depending on your application's concurrency and transactional requirements, you may
choose one of the three Berkeley DB Environments: Data Store, Concurrent Data Store, or
Transactional Data Store. For details on creating and configuring the environment, see the
Berkeley DB Programmer's Reference Guide

Choose the Berkeley DB Access Method

For each Berkeley DB datastore, you may choose from any of the four Berkeley DB access
methods — BTREE, HASH, RECNO, or QUEUE — and a number of other database options.
Your choice depends on several factors such as whether you need ordered keys, unique
keys, record number access, and so forth. For more information on access methods, see
the Berkeley DB Programmer’s Reference Guide.

Choose the Format for Keys and Values

For each database you may choose a binding format for the keys and values. For example,
the tuple format is useful for keys because it has a deterministic sort order. The serial
format is useful for values if you want to store arbitrary Java objects. In some cases a
custom format may be appropriate. For details on choosing a binding format see Using
Data Bindings (page 76).

Choose the Binding for Keys and Values

With the serial data format you do not have to create a binding for each Java class that
is stored since Java serialization is used. But for other formats a binding must be defined
that translates between stored byte arrays and Java objects. For details see Using Data
Bindings (page 76).

Choose Secondary Indices

Any database that has unique keys may have any number of secondary indices. A
secondary index has keys that are derived from data values in the primary database.

9/9/2013

DB Collections Page 2

http://www.odmg.org/odmg.html

Library Version 11.2.5.3 Introduction

This allows lookup and iteration of objects in the database by its index keys. For each
index you must define how the index keys are derived from the data values using a
SecondaryKeyCreator. For details see the SecondaryDatabase, SecondaryConfig and
SecondaryKeyCreator classes.

6. Choose the Collection Interface for each Database

The standard Java Collection interfaces are used for accessing databases and secondary
indices. The Map and Set interfaces may be used for any type of database. The Iterator
interface is used through the Set interfaces. For more information on the collection
interfaces see Using Stored Collections (page 82).

Any number of bindings and collections may be created for the same database. This allows
multiple views of the same stored data. For example, a data store may be viewed as a Map
of keys to values, a Set of keys, or a Collection of values. String values, for example, may be
used with the built-in binding to the String class, or with a custom binding to another class
that represents the string values differently.

It is sometimes desirable to use a Java class that encapsulates both a data key and a data
value. For example, a Part object might contain both the part number (key) and the part
name (value). Using the DB Java Collections API this type of object is called an "entity”. An
entity binding is used to translate between the Java object and the stored data key and value.
Entity bindings may be used with all Collection types.

Please be aware that the provided DB Java Collections API collection classes do not conform
completely to the interface contracts defined in the java.util package. For example, all
iterators must be explicitly closed and the size() method is not available. The differences
between the DB Java Collections API collections and the standard Java collections are
documented in Stored Collections Versus Standard Java Collections (page 84).

Tutorial Introduction

Most of the remainder of this document illustrates the use of the DB Java Collections API by
presenting a tutorial that describes usage of the API. This tutorial builds a shipment database,
a familiar example from classic database texts.

The examples illustrate the following concepts of the DB Java Collections API:
» Object-to-data bindings

« The database environment

Databases that contain key/value records

» Secondary index databases that contain index keys

Java collections for accessing databases and indices
 Transactions used to commit or undo database changes

The examples build on each other, but at the same time the source code for each example
stands alone.

9/9/2013

DB Collections Page 3

Library Version 11.2.5.3 Introduction

o The Basic Program (page 6)

» Using Secondary Indices (page 32)

Using Entity Classes (page 45)

Using Tuples (page 57)
« Using Serializable Entities (page 67)

The shipment database consists of three database stores: the part store, the supplier store,
and the shipment store. Each store contains a number of records, and each record consists of
a key and a value.

Store Key Value

Part Part Number Name, Color, Weight, City
Supplier Supplier Number Name, Status, City
Shipment Part Number, Supplier Number |Quantity

In the example programs, Java classes containing the fields above are defined for the key and
value of each store: PartKey, PartData, SupplierKey, SupplierData, ShipmentKey and
ShipmentData. In addition, because the Part's Weight field is itself composed of two fields

— the weight value and the unit of measure — it is represented by a separate Weight class.
These classes will be defined in the first example program.

In general the DB Java Collections API uses bindings to describe how Java objects are stored. A
binding defines the stored data syntax and the mapping between a Java object and the stored
data. The example programs show how to create different types of bindings, and explains the

characteristics of each type.

The following tables show the record values that are used in all the example programs in the
tutorial.

9/9/2013

DB Collections Page 4

Library Version 11.2.5.3

Introduction

Number Name Color Weight City

P1 Nut Red 12.0 grams London
P2 Bolt Green 17.0 grams Paris
P3 Screw Blue 17.0 grams Rome
P4 Screw Red 14.0 grams London
P5 Cam Blue 12.0 grams Paris
P6 Cog Red 19.0 grams London
Number Name Status City

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

Part Number Supplier Number Quantity

P1 S1 300

P1 S2 300

P2 S1 200

P2 S2 400

P2 S3 200

P2 S4 200

P3 S1 400

P4 S1 200

P4 S4 300

P5 S1 100

P5 S4 400

P6 S1 100

9/9/2013

DB Collections

Page 5

Chapter 2. The Basic Program

The Basic example is a minimal implementation of the shipment program. It writes and reads
the part, supplier and shipment databases.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Serialized Key and Value Classes

The key and value classes for each type of shipment record — Parts, Suppliers and Shipments
— are defined as ordinary Java classes. In this example the serialized form of the key and
value objects is stored directly in the database. Therefore these classes must implement the
standard Java java.io.Serializable interface. A compact form of Java serialization is used
that does not duplicate the class description in each record. Instead the class descriptions
are stored in the class catalog store, which is described in the next section. But in all other
respects, standard Java serialization is used.

An important point is that instances of these classes are passed and returned by value, not by
reference, when they are stored and retrieved from the database. This means that changing a
key or value object does not automatically change the database. The object must be explicitly
stored in the database after changing it. To emphasize this point the key and value classes
defined here have no field setter methods. Setter methods can be defined, but it is important
to remember that calling a setter method will not cause the change to be stored in the
database. How to store and retrieve objects in the database will be described later.

Each key and value class contains a toString method that is used to output the contents of
the object in the example program. This is meant for illustration only and is not required for
database objects in general.

Notice that the key and value classes defined below do not contain any references to
com.sleepycat packages. An important characteristic of these classes is that they are
independent of the database. Therefore, they may be easily used in other contexts and may
be defined in a way that is compatible with other tools and libraries.

The PartKey class contains only the Part's Number field.

Note that PartKey (as well as SupplierKey below) contain only a single String field. Instead
of defining a specific class for each type of key, the String class by itself could have been
used. Specific key classes were used to illustrate strong typing and for consistency in the
example. The use of a plain String as an index key is illustrated in the next example program.
It is up to the developer to use either primitive Java classes such as String and Integer, or
strongly typed classes. When there is the possibility that fields will be added later to a key or
value, a specific class should be used.

9/9/2013

DB Collections Page 6

Library Version 11.2.5.3

The Basic Program

import java.io.Serializable;

public class PartKey implements Serializable

{

}

private String number;

public PartKey(String number) {
this.number = number;

}

public final String getNumber() {
return number;

}

public String toString() {
return "[PartKey: number=

+ number + ']';

}

The PartData class contains the Part's Name, Color, Weight and City fields.

import java.io.Serializable;

public class PartData implements Serializable

{

private String name;
private String color;
private Weight weight;
private String city;

public PartData(String name, String color, Weight weight, String city)

{
this.name = name;
this.color = color;
this.weight = weight;
this.city = city;
}
public final String getName()
{
return name;
}
public final String getColor()
{
return color;
}
public final Weight getWeight()
{

9/9/2013

DB Collections

Page 7

Library Version 11.2.5.3

The Basic Program

}

return weight;

}
public final String getCity()
{
return city;
}
public String toString()
{
return "[PartData: name=" + name +
" color=" + color +
" weight=" + weight +
" city=" + city + ']';
}

The Weight class is also defined here, and is used as the type of the Part's Weight field. Just
as in standard Java serialization, nothing special is needed to store nested objects as long as
they are all Serializable.

import java.io.Serializable;

public class Weight implements Serializable

{

public final static String GRAMS = "grams";
public final static String OUNCES = "ounces";

private double amount;
private String units;

public Weight(double amount, String units)

{
this.amount = amount;
this.units = units;
}
public final double getAmount()
{
return amount;
}
public final String getUnits()
{
return units;
}

public String toString()
{

return "[" + amount + + units + ']';

9/9/2013

DB Collections Page 8

Library Version 11.2.5.3

The Basic Program

}

The SupplierKey class contains the Supplier's Number field.

import java.io.Serializable;

public class SupplierKey implements Serializable

{

}

The SupplierData class contains the Supplier's Name, Status and City fields.

private String number;

public SupplierKey(String number)

{
this.number = number;
}
public final String getNumber()
{
return number;
}
public String toString()
{
return "[SupplierKey: number=" + number + ']';
}

import java.io.Serializable;

public class SupplierData implements Serializable

{

private String name;
private int status;
private String city;

public SupplierData(String name, int status, String city)

{
this.name = name;
this.status = status;
this.city = city;
}
public final String getName()
{
return name;
}

public final int getStatus()
{

9/9/2013

DB Collections

Page 9

Library Version 11.2.5.3 The Basic Program

return status;

}
public final String getCity()
{
return city;
}
public String toString()
{
return "[SupplierData: name=" + name +
" status=" + status +
" city=" + city + ']';
}

The ShipmentKey class contains the keys of both the Part and Supplier.

import java.io.Serializable;

public class ShipmentKey implements Serializable

{
private String partNumber;
private String supplierNumber;
public ShipmentKey(String partNumber, String supplierNumber)
{
this.partNumber = partNumber;
this.supplierNumber = supplierNumber;
}
public final String getPartNumber()
{
return partNumber;
}
public final String getSupplierNumber()
{
return supplierNumber;
}
public String toString()
{
return "[ShipmentKey: supplier=" + supplierNumber +
" part=" + partNumber + ']°';
}
}

9/9/2013 DB Collections Page 10

Library Version 11.2.5.3

The Basic Program

The ShipmentData class contains only the Shipment's Quantity field. Like PartKey and
SupplierKey, ShipmentData contains only a single primitive field. Therefore the Integer
class could have been used instead of defining a specific value class.

import

public
{

java.io.Serializable;

class ShipmentData implements Serializable

private int quantity;

public ShipmentData(int quantity)

{
}

this.quantity = quantity;

public final int getQuantity()

{
}

return quantity;

public String toString()

{

}
}

return "[ShipmentData: quantity=" + quantity + ']';

Opening and Closing the Database Environment

This section of the tutorial describes how to open and close the database environment. The
database environment manages resources (for example, memory, locks and transactions) for
any number of databases. A single environment instance is normally used for all databases.

The SampleDatabase class is used to open and close the environment. It will also be used in
following sections to open and close the class catalog and other databases. Its constructor is
used to open the environment and its close() method is used to close the environment. The
skeleton for the SampleDatabase class follows.

import
import
import
import
import

public
{

com.sleepycat.db.DatabaseException;
com.sleepycat.db.Environment;
com.sleepycat.db.EnvironmentConfig;
java.io.File;
java.io.FileNotFoundException;

class SampleDatabase

private Environment env;

public SampleDatabase(String homeDirectory)

{

throws DatabaseException, FileNotFoundException

9/9/2013

DB Collections Page 11

Library Version 11.2.5.3 The Basic Program

}

public void close()
throws DatabaseException
{
}
}

The first thing to notice is that the Environment class is in the com.sleepycat.db package,
not the com.sleepycat.collections package. The com.sleepycat.db package contains all
core Berkeley DB functionality. The com.sleepycat.collections package contains extended
functionality that is based on the Java Collections API. The collections package is layered
on top of the com.sleepycat.db package. Both packages are needed to create a complete
application based on the DB Java Collections API.

The following statements create an Environment object.

public SampleDatabase(String homeDirectory)
throws DatabaseException, FileNotFoundException

{

System.out.println("Opening environment in: + homeDirectory);
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setTransactional(true);
envConfig.setAllowCreate(true);
envConfig.setInitializeCache(true);
envConfig.setInitializeLocking(true);

env = new Environment(new File(homeDirectory), envConfig);

}

The EnvironmentConfig class is used to specify environment configuration parameters.
The first configuration option specified — setTransactional() — is set to true to create an
environment where transactional (and non-transactional) databases may be opened. While
non-transactional environments can also be created, the examples in this tutorial use a
transactional environment.

setAllowCreate() is set to true to specify that the environment's files will be created if
they don't already exist. If this parameter is not specified, an exception will be thrown if the
environment does not already exist. A similar parameter will be used later to cause databases
to be created if they don't exist.

When an Environment object is constructed, a home directory and the environment
configuration object are specified. The home directory is the location of the environment's log
files that store all database information.

The following statement closes the environment. The environment must be closed when
database work is completed to free allocated resources and to avoid having to run recovery
later. It is recommended that databases are closed before closing the environment.

public void close()

9/9/2013

DB Collections Page 12

Library Version 11.2.5.3 The Basic Program

throws DatabaseException

{
}

env.close();

The following getter method returns the environment for use by other classes in the example
program. The environment is used for opening databases and running transactions.

public class SampleDatabase

{
public final Environment getEnvironment()
{
return env;
}
}

Opening and Closing the Class Catalog

This section describes how to open and close the Java class catalog. The class catalog is a
specialized database store that contains the Java class descriptions of the serialized objects
that are stored in the database. The class descriptions are stored in the catalog rather than
storing them redundantly in each database record. A single class catalog per environment
must be opened whenever serialized objects will be stored in the database.

The SampleDatabase class is extended to open and close the class catalog. The following
additional imports and class members are needed.

import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.ClassCatalog;
import com.sleepycat.db.Database;

import com.sleepycat.db.DatabaseConfig;

import com.sleepycat.db.DatabaseType;

import com.sleepycat.db.DatabaseException;

import com.sleepycat.db.Environment;

import com.sleepycat.db.EnvironmentConfig;

import java.io.File;

import java.io.FileNotFoundException;

public class SampleDatabase

{
private Environment env;
private static final String CLASS_CATALOG = "java_class_catalog";
private StoredClassCatalog javaCatalog;

}

9/9/2013

DB Collections Page 13

Library Version 11.2.5.3 The Basic Program

While the class catalog is itself a database, it contains metadata for other databases and is
therefore treated specially by the DB Java Collections API. The StoredClassCatalog class
encapsulates the catalog store and implements this special behavior.

The following statements open the class catalog by creating a Database and a
StoredClassCatalog object. The catalog database is created if it does not already exist.

public SampleDatabase(String homeDirectory)
throws DatabaseException, FileNotFoundException

{

DatabaseConfig dbConfig = new DatabaseConfig();
dbConfig.setTransactional(true);
dbConfig.setAllowCreate(true);
dbConfig.setType(DatabaseType.BTREE);

Database catalogDb = env.openDatabase(null, CLASS_CATALOG, null,
dbConfig);

javaCatalog = new StoredClassCatalog(catalogDb);

}

public final StoredClassCatalog getClassCatalog() {
return javaCatalog;

}

The DatabaseConfig class is used to specify configuration parameters when opening a
database. The first configuration option specified — setTransactional() — is set to true to
create a transactional database. While non-transactional databases can also be created, the
examples in this tutorial use transactional databases.

setAllowCreate() is set to true to specify that the database will be created if it does not
already exist. If this parameter is not specified, an exception will be thrown if the database
does not already exist.

setDatabaseType() identifies the database storage type or access method. For opening a
catalog database, the BTREE type is required. BTREE is the most commonly used database type
and in this tutorial is used for all databases.

The first parameter of the openDatabase() method is an optional transaction that is used for
creating a new database. If null is passed, auto-commit is used when creating a database.

The second and third parameters of openDatabase() specify the filename and database (sub-
file) name of the database. The database name is optional and is null in this example.

The last parameter of openDatabase() specifies the database configuration object.

Lastly, the StoredClassCatalog object is created to manage the information in the class
catalog database. The StoredClassCatalog object will be used in the sections following for
creating serial bindings.

9/9/2013

DB Collections Page 14

Library Version 11.2.5.3 The Basic Program

The getClassCatalog method returns the catalog object for use by other classes in the
example program.

When the environment is closed, the class catalog is closed also.

public void close()
throws DatabaseException

{

javaCatalog.close();
env.close();

}

The StoredClassCatalog.close() method simply closes the underlying class catalog
database and in fact the Database.close() method may be called instead, if desired. It is
recommended that you close the catalog database and all other databases, before closing the
environment.

Opening and Closing Databases

This section describes how to open and close the Part, Supplier and Shipment databases. A
database is a collection of records, each of which has a key and a value. The keys and values
are stored in a selected format, which defines the syntax of the stored data. Two examples of
formats are Java serialization format and tuple format. In a given database, all keys have the
same format and all values have the same format.

The SampleDatabase class is extended to open and close the three databases. The following
additional class members are needed.

public class SampleDatabase

{
private static final String SUPPLIER_STORE = "supplier_store";
private static final String PART_STORE = "part_store";
private static final String SHIPMENT_STORE = "shipment_store";
private Database supplierDb;
private Database partDb;
private Database shipmentDb;

}

For each database there is a database name constant and a Database object.

The following statements open the three databases by constructing a Database object.

public SampleDatabase(String homeDirectory)
throws DatabaseException, FileNotFoundException

{

DatabaseConfig dbConfig = new DatabaseConfig();
dbConfig.setTransactional(true);
dbConfig.setAllowCreate(true);

9/9/2013

DB Collections Page 15

Library Version 11.2.5.3 The Basic Program

dbConfig.setType(DatabaseType.BTREE);

partDb = env.openDatabase(null, PART_STORE, null, dbConfig);

supplierDb = env.openDatabase(null, SUPPLIER_STORE, null,
dbConfig);

shipmentDb = env.openDatabase(null, SHIPMENT_STORE, null,
dbConfig);

}

The database configuration object that was used previously for opening the catalog database
is reused for opening the three databases above. The databases are created if they don't
already exist. The parameters of the openDatabase() method were described earlier when
the class catalog database was opened.

The following statements close the three databases.

public void close()
throws DatabaseException

{
partDb.close();
supplierDb.close();
shipmentDb.close();
javaCatalog.close();
env.close();

}

It is recommended that all databases, including the catalog database, is closed before closing
the environment.

The following getter methods return the databases for use by other classes in the example
program.

public class SampleDatabase

{
5&611c final Database getPartDatabase()
¢ return partDb;
}
public final Database getSupplierDatabase()
¢ return supplierDb;
}
public final Database getShipmentDatabase()
¢ return shipmentDb;

}

9/9/2013

DB Collections Page 16

Library Version 11.2.5.3 The Basic Program

}

Creating Bindings and Collections

Bindings translate between stored records and Java objects. In this example, Java
serialization bindings are used. Serial bindings are the simplest type of bindings because no
mapping of fields or type conversion is needed. Tuple bindings — which are more difficult to
create than serial bindings but have some advantages — will be introduced later in the Tuple
example program.

Standard Java collections are used to access records in a database. Stored collections use
bindings transparently to convert the records to objects when they are retrieved from the
collection, and to convert the objects to records when they are stored in the collection.

An important characteristic of stored collections is that they do not perform object caching.
Every time an object is accessed via a collection it will be added to or retrieved from the
database, and the bindings will be invoked to convert the data. Objects are therefore always
passed and returned by value, not by reference. Because Berkeley DB is an embedded
database, efficient caching of stored raw record data is performed by the database library.

The SampleViews class is used to create the bindings and collections. This class is separate
from the SampleDatabase class to illustrate the idea that a single set of stored data can be
accessed via multiple bindings and collections, or views. The skeleton for the SampleViews
class follows.

import com.sleepycat.bind.EntryBinding;

import com.sleepycat.bind.serial.ClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.collections.StoredEntrySet;
import com.sleepycat.collections.StoredMap;

public class SampleViews

{
private StoredMap partMap;
private StoredMap supplierMap;
private StoredMap shipmentMap;

public SampleViews(SampleDatabase db)

{
}
}

A StoredMap field is used for each database. The StoredMap class implements the standard
Java Map interface, which has methods for obtaining a Set of keys, a Collection of values, or
a Set of Map.Entry key/value pairs. Because databases contain key/value pairs, any Berkeley
DB database may be represented as a Java map.

The following statements create the key and data bindings using the SerialBinding class.

9/9/2013

DB Collections Page 17

Library Version 11.2.5.3 The Basic Program

public SampleViews(SampleDatabase db)
{
ClassCatalog catalog = db.getClassCatalog();
EntryBinding partKeyBinding =
new SerialBinding(catalog, PartKey.class);
EntryBinding partValueBinding =
new SerialBinding(catalog, PartData.class);
EntryBinding supplierKeyBinding =
new SerialBinding(catalog, SupplierKey.class);
EntryBinding supplierValueBinding =
new SerialBinding(catalog, SupplierData.class);
EntryBinding shipmentKeyBinding =
new SerialBinding(catalog, ShipmentKey.class);
EntryBinding shipmentValueBinding =
new SerialBinding(catalog, ShipmentData.class);

}

The first parameter of the SerialBinding constructor is the class catalog, and is used to
store the class descriptions of the serialized objects.

The second parameter is the base class for the serialized objects and is used for type checking
of the stored objects. If null or Object.class is specified, then any Java class is allowed.
Otherwise, all objects stored in that format must be instances of the specified class or derived

from the specified class. In the example, specific classes are used to enable strong type
checking.

The following statements create standard Java maps using the StoredMap class.

public SampleViews(SampleDatabase db)
{
partMap =
new StoredMap(db.getPartDatabase(),
partKeyBinding, partValueBinding, true);
supplierMap =
new StoredMap(db.getSupplierDatabase(),

supplierKeyBinding, supplierValueBinding, true);
shipmentMap =

new StoredMap(db.getShipmentDatabase(),
shipmentKeyBinding, shipmentValueBinding, true);

The first parameter of the StoredMap constructor is the database. In a StoredMap, the

database keys (the primary keys) are used as the map keys. The Index example shows how to
use secondary index keys as map keys.

The second and third parameters are the key and value bindings to use when storing and
retrieving objects via the map.

9/9/2013

DB Collections Page 18

Library Version 11.2.5.3 The Basic Program

The fourth and last parameter specifies whether changes will be allowed via the collection. If
false is passed, the collection will be read-only.

The following getter methods return the stored maps for use by other classes in the example
program. Convenience methods for returning entry sets are also included.

public class SampleViews

{
public final StoredMap getPartMap()
{
return partMap;
}
public final StoredMap getSupplierMap()
{
return supplierMap;
}
public final StoredMap getShipmentMap()
{
return shipmentMap;
}
public final StoredEntrySet getPartEntrySet()
{
return (StoredEntrySet) partMap.entrySet();
}
public final StoredEntrySet getSupplierEntrySet()
{
return (StoredEntrySet) supplierMap.entrySet();
}
public final StoredEntrySet getShipmentEntrySet()
{
return (StoredEntrySet) shipmentMap.entrySet();
}
}

Note that StoredMap and StoredEntrySet are returned rather than just returning Map and
Set. Since StoredMap implements the Map interface and StoredEntrySet implements the Set
interface, you may ask why Map and Set were not returned directly.

StoredMap, StoredEntrySet, and other stored collection classes have a small number of
extra methods beyond those in the Java collection interfaces. The stored collection types are
therefore returned to avoid casting when using the extended methods. Normally, however,
only a Map or Set is needed, and may be used as follows.

SampleDatabase sd = new SampleDatabase(new String("/home"));

9/9/2013 DB Collections Page 19

Library Version 11.2.5.3 The Basic Program

SampleViews views = new SampleViews(sd);
Map partMap = views.getPartMap();
Set supplierEntries = views.getSupplierEntrySet();

Implementing the Main Program

The main program opens the environment and databases, stores and retrieves objects within
a transaction, and finally closes the environment databases. This section describes the

main program shell, and the next section describes how to run transactions for storing and
retrieving objects.

The Sample class contains the main program. The skeleton for the Sample class follows.

import com.sleepycat.db.DatabaseException;
import java.io.FileNotFoundException;

public class Sample

{
private SampleDatabase db;
private SampleViews views;
public static void main(String args)
{
}
private Sample(String homeDir)
throws DatabaseException, FileNotFoundException
{
}
private void close()
throws DatabaseException
{
}
private void run()
throws Exception
{
}
}

The main program uses the SampleDatabase and SampleViews classes that were described in
the preceding sections. The main method will create an instance of the Sample class, and call
its run() and close() methods.

9/9/2013

DB Collections Page 20

Library Version 11.2.5.3 The Basic Program

The following statements parse the program's command line arguments.

public static void main(String[] args)

{
System.out.println("\nRunning sample: " + Sample.class);
String homeDir = "./tmp";
for (int i = @; i < args.length; i += 1)
{
String arg = args[i];
if (args[i].equals("-h") && i < args.length - 1)
{
i+=1;
homeDir = args[i];
}
else
{
System.err.println("Usage:\n java " +
Sample.class.getName() +
"\n [-h <home-directory>]");
System.exit(2);
}
}
}

The usage command is:

java com.sleepycat.examples.bdb.shipment.basic.Sample
[-h <home-directory>]

The -h command is used to set the homeDir variable, which will later be passed to the
SampleDatabase() constructor. Normally all Berkeley DB programs should provide a way to
configure their database environment home directory.

The default for the home directory is . /tmp — the tmp subdirectory of the current directory
where the sample is run. The home directory must exist before running the sample. To re-
create the sample database from scratch, delete all files in the home directory before running
the sample.

The home directory was described previously in Opening and Closing the Database
Environment (page 11).

Of course, the command line arguments shown are only examples and a real-life application
may use different techniques for configuring these options.

9/9/2013 DB Collections Page 21

Library Version 11.2.5.3 The Basic Program

The following statements create an instance of the Sample class and call its run() and
close() methods.

public static void main(String args)

{
Sample sample = null;
try
{
sample = new Sample(homeDir);
sample.run();
}
catch (Exception e)
{
e.printStackTrace();
}
finally
{
if (sample != null)
{

try

{
sample.close();

}

catch (Exception e)

{
System.err.println("Exception during database close:");
e.printStackTrace();

}

}
}
}

The Sample() constructor will open the environment and databases, and the run() method
will run transactions for storing and retrieving objects. If either of these throws an exception,
then the program was unable to run and should normally terminate. (Transaction retries are
handled at a lower level and will be described later.) The first catch statement handles such
exceptions.

The finally statement is used to call the close() method since an attempt should always be
made to close the environment and databases cleanly. If an exception is thrown during close
and a prior exception occurred above, then the exception during close is likely a side effect of
the prior exception.

The Sample() constructor creates the SampleDatabase and SampleViews objects.

private Sample(String homeDir)

throws DatabaseException, FileNotFoundException
{

db = new SampleDatabase(homeDir);

views = new SampleViews(db);

9/9/2013 DB Collections Page 22

Library Version 11.2.5.3 The Basic Program

}

Recall that creating the SampleDatabase object will open the environment and all databases.

To close the database the Sample.close() method simply calls SampleDatabase.close().

private void close()
throws DatabaseException

{
}

The run() method is described in the next section.

db.close();

Using Transactions

DB transactional applications have standard transactional characteristics: recoverability,
atomicity and integrity (this is sometimes also referred to generically as ACID properties).
The DB Java Collections API provides these transactional capabilities using a transaction-per-
thread model. Once a transaction is begun, it is implicitly associated with the current thread
until it is committed or aborted. This model is used for the following reasons.

» The transaction-per-thread model is commonly used in other Java APIs such as J2EE.

« Since the Java collections API is used for data access, there is no way to pass a transaction
object to methods such as Map. put.

The DB Java Collections API provides two transaction APIs. The lower-level API is the
CurrentTransaction class. It provides a way to get the transaction for the current thread,
and to begin, commit and abort transactions. It also provides access to the Berkeley DB core
APl Transaction object. With CurrentTransaction, just as in the com.sleepycat.db API,
the application is responsible for beginning, committing and aborting transactions, and for
handling deadlock exceptions and retrying operations. This APl may be needed for some
applications, but it is not used in the example.

The example uses the higher-level TransactionRunner and TransactionWorker APIs, which
are build on top of CurrentTransaction. TransactionRunner.run() automatically begins a
transaction and then calls the TransactionWorker.doWork() method, which is implemented
by the application.

The TransactionRunner.run() method automatically detects deadlock exceptions and
performs retries by repeatedly calling the TransactionWorker.doWork() method until
the operation succeeds or the maximum retry count is reached. If the maximum retry
count is reached or if another exception (other than DeadlockException) is thrown by
TransactionWorker.doWork(), then the transaction will be automatically aborted.
Otherwise, the transaction will be automatically committed.

Using this high-level API, if TransactionRunner.run() throws an exception, the application
can assume that the operation failed and the transaction was aborted; otherwise, when

an exception is not thrown, the application can assume the operation succeeded and the
transaction was committed.

9/9/2013

DB Collections Page 23

Library Version 11.2.5.3 The Basic Program

The Sample.run() method creates a TransactionRunner object and calls its run() method.
import com.sleepycat.collections.TransactionRunner;
import com.sleepycat.collections.TransactionWorker;

public class Sample

{
private SampleDatabase db;
private void run()
throws Exception
{
TransactionRunner runner =
new TransactionRunner(db.getEnvironment());
runner.run(new PopulateDatabase());
runner.run(new PrintDatabase());
}
private class PopulateDatabase implements TransactionWorker
{
public void doWork()
throws Exception
{
}
}
private class PrintDatabase implements TransactionWorker
{
public void doWork()
throws Exception
{
}
}
}

The run() method is called by main() and was outlined in the previous section. It first
creates a TransactionRunner, passing the database environment to its constructor.

It then calls TransactionRunner.run() to execute two transactions, passing instances of
the application-defined PopulateDatabase and PrintDatabase nested classes. These classes
implement the TransactionWorker.doWork() method and will be fully described in the next
two sections.

For each call to TransactionRunner.run(), a separate transaction will be performed.

The use of two transactions in the example — one for populating the database and another
for printing its contents — is arbitrary. A real-life application should be designed to create
transactions for each group of operations that should have ACID properties, while also taking
into account the impact of transactions on performance.

The advantage of using TransactionRunner is that deadlock retries and transaction begin,
commit and abort are handled automatically. However, a TransactionWorker class must be

9/9/2013

DB Collections Page 24

Library Version 11.2.5.3 The Basic Program

implemented for each type of transaction. If desired, anonymous inner classes can be used to
implement the TransactionWorker interface.

Adding Database Items

Adding (as well as updating, removing, and deleting) information in the database is
accomplished via the standard Java collections API. In the example, the Map.put method is
used to add objects. All standard Java methods for modifying a collection may be used with
the DB Java Collections API.

The PopulateDatabase.doWork() method calls private methods for adding objects to each
of the three database stores. It is called via the TransactionRunner class and was outlined in
the previous section.

import java.util.Map;
import com.sleepycat.collections.TransactionWorker;

public class Sample

{
private SampleViews views;
private class PopulateDatabase implements TransactionWorker
{
public void doWork()
throws Exception
{
addSuppliers();
addParts();
addShipments();
}
}
private void addSuppliers()
{
}
private void addParts()
{
}
private void addShipments()
{
}
}

The addSuppliers(), addParts() and addShipments() methods add objects to the
Suppliers, Parts and Shipments stores. The Map for each store is obtained from the
SampleViews object.

9/9/2013 DB Collections Page 25

Library Version 11.2.5.3 The Basic Program

private void addSuppliers()

{
Map suppliers = views.getSupplierMap();
if (suppliers.isEmpty())
{
System.out.println("Adding Suppliers");
suppliers.put(new SupplierKey("S1"),
new SupplierData("Smith", 20, "London"));
suppliers.put(new SupplierKey("S2"),
new SupplierData("Jones", 10, "Paris"));
suppliers.put(new SupplierKey("S3"),
new SupplierData("Blake", 30, "Paris"));
suppliers.put(new SupplierKey("S4"),
new SupplierData("Clark", 20, "London"));
suppliers.put(new SupplierKey("S5"),
new SupplierData("Adams", 30, "Athens"));
}
}

private void addParts()
{
Map parts = views.getPartMap();
if (parts.isEmpty())
{
System.out.println("Adding Parts");
parts.put(new PartKey("P1"),
new PartData("Nut", "Red",
new Weight(12.0, Weight.GRAMS),
"London"));
parts.put(new PartKey("P2"),
new PartData("Bolt", "Green",
new Weight(17.0, Weight.GRAMS),
"Paris"));
parts.put(new PartKey("P3"),
new PartData("Screw", "Blue",
new Weight(17.0, Weight.GRAMS),
"Rome"));
parts.put(new PartKey("P4"),
new PartData("Screw", "Red",
new Weight(14.0, Weight.GRAMS),
"London"));
parts.put(new PartKey("P5"),
new PartData("Cam", "Blue",
new Weight(12.0, Weight.GRAMS),
"Paris"));
parts.put(new PartKey("P6"),
new PartData("Cog", "Red",
new Weight(19.0, Weight.GRAMS),
"London"));

9/9/2013 DB Collections Page 26

Library Version 11.2.5.3

The Basic Program

}

private void addShipments()

{

Map shipments

= views.

getShipmentMap();

if (shipments.isEmpty())

{

System.out.println("Adding Shipments");

shipments

shipments

shipments.

shipments

shipments.
shipments.
shipments.
shipments.
shipments.
shipments.
shipments.

shipments.

}

.put(new

new

.put(new

new
put(new
new

.put(new

new
put(new
new
put(new
new
put(new
new
put(new
new
put(new
new
put(new
new
put(new
new
put(new
new

ShipmentKey("P1", "S1"),
ShipmentData(300));
ShipmentKey("P2", "S1"),
ShipmentData(200));
ShipmentKey("P3", "S1"),
ShipmentData(400));
ShipmentKey("P4", "S1"),
ShipmentData(200));
ShipmentKey("P5", "S1"),
ShipmentData(100));
ShipmentKey("P6", "S1"),
ShipmentData(100));
ShipmentKey("P1", "S2"),
ShipmentData(300));
ShipmentKey("P2", "S2"),
ShipmentData(400));
ShipmentKey("P2", "S3"),
ShipmentData(200));
ShipmentKey("P2", "S4"),
ShipmentData(200));
ShipmentKey("P4", "S4"),
ShipmentData(300));
ShipmentKey("P5", "S4"),
ShipmentData(400));

The key and value classes used above were defined in the Defining Serialized Key and Value

Classes (page 6).

In each method above, objects are added only if the map is not empty. This is a simple way
of allowing the example program to be run repeatedly. In real-life applications another
technique — checking the Map.containskey method, for example — might be used.

Retrieving Database Items

Retrieving information from the database is accomplished via the standard Java collections
API. In the example, the Set.iterator method is used to iterate all Map.Entry objects for

9/9/2013

DB Collections

Page 27

Library Version 11.2.5.3 The Basic Program

each store. All standard Java methods for retrieving objects from a collection may be used
with the DB Java Collections API.

The PrintDatabase.doWork() method calls printEntries() to print the map entries for
each database store. It is called via the TransactionRunner class and was outlined in the
previous section.

import java.util.Iterator;

public class Sample

{
private SampleViews views;
private class PrintDatabase implements TransactionWorker
{
public void doWork()
throws Exception
{
printEntries("Parts",
views.getPartEntrySet().iterator());
printEntries("Suppliers",
views.getSupplierEntrySet().iterator());
printEntries("Shipments",
views.getShipmentEntrySet().iterator());
}
}
private void printEntries(String label, Iterator iterator)
{
}
}

The Set of Map.Entry objects for each store is obtained from the SampleViews object. This
set can also be obtained by calling the Map.entrySet method of a stored map.

The printEntries() prints the map entries for any stored map. The Object.toString
method of each key and value is called to obtain a printable representation of each object.

private void printEntries(String label, Iterator iterator)

{
System.out.println("\n--- " + label + " ---");
while (iterator.hasNext())
{
Map.Entry entry = (Map.Entry) iterator.next();
System.out.println(entry.getKey().toString());
System.out.println(entry.getValue().toString());
}
¥

9/9/2013 DB Collections Page 28

Library Version 11.2.5.3

The Basic Program

This is one of a small number of behavioral differences between standard Java collections and
stored collections. For a complete list see Using Stored Collections (page 82).

The output of the example program is shown below.

Adding Suppliers

Adding Parts

Adding Shipments

--- Parts ---

PartKey: number=P1
PartData: name=Nut color=Red weight=[12.0 grams] city=London
PartKey: number=P2
PartData: name=Bolt color=Green weight=[17.0 grams] city=Paris
PartKey: number=P3
PartData: name=Screw color=Blue weight=[17.0 grams] city=Rome
PartKey: number=P4
PartData: name=Screw color=Red weight=[14.0 grams] city=London
PartKey: number=P5
PartData: name=Cam color=Blue weight=[12.0 grams] city=Paris
PartKey: number=P6
PartData: name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---

SupplierKey:

SupplierData:

SupplierKey:

SupplierData:

SupplierKey:

SupplierData:

SupplierKey:

SupplierData:

SupplierKey:

SupplierData:

number=S1
name=Smith status=20
number=S2
name=Jones status=10
number=S3
name=Blake status=30
number=S4
name=Clark status=20
number=S5
name=Adams status=30

--- Shipments ---

ShipmentKey:

ShipmentData:

ShipmentKey:

ShipmentData:

ShipmentKey:

ShipmentData:

ShipmentKey:

ShipmentData:

ShipmentKey:

ShipmentData:

ShipmentKey:

ShipmentData:

ShipmentKey:

ShipmentData:

supplier=S1 part=P1
quantity=300
supplier=S2 part=P1
quantity=300
supplier=S1 part=P2
quantity=200
supplier=S2 part=P2
quantity=400
supplier=S3 part=P2
quantity=200
supplier=S4 part=P2
quantity=200
supplier=S1 part=P3
quantity=400

city=London
city=Paris
city=Paris
city=London

city=Athens

9/9/2013

DB Collections

Page 29

Library Version 11.2.5.3 The Basic Program

ShipmentKey: supplier=S1 part=P4
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P4
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P5
ShipmentData: quantity=100
ShipmentKey: supplier=S4 part=P5
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P6
ShipmentData: quantity=100

Handling Exceptions

Exception handling was illustrated previously in Implementing the Main Program (page
20) and Using Transactions (page 23) exception handling in a DB Java Collections API
application in more detail.

There are two exceptions that must be treated specially: RunRecoveryException and
DeadlockException.

RunRecoveryException is thrown when the only solution is to shut down the application and
run recovery. All applications must catch this exception and follow the recovery procedure.

When DeadlockException is thrown, the application should normally retry the operation. If a
deadlock continues to occur for some maximum number of retries, the application should give
up and try again later or take other corrective actions. The DB Java Collections API provides
two APIs for transaction execution.

« When using the CurrentTransaction class directly, the application must catch
DeadlockException and follow the procedure described previously.

« When using the TransactionRunner class, retries are performed automatically and the
application need only handle the case where the maximum number of retries has been
reached. In that case, TransactionRunner.run will throw DeadlockException.

When using the TransactionRunner class there are two other considerations.

« First, if the application-defined TransactionWorker.doWork method throws an exception
the transaction will automatically be aborted, and otherwise the transaction will
automatically be committed. Applications should design their transaction processing with
this in mind.

» Second, please be aware that TransactionRunner.run unwraps exceptions in order to
discover whether a nested exception is a DeadlockException. This is particularly important
since all Berkeley DB exceptions that occur while calling a stored collection method are
wrapped with a RuntimeExceptionWrapper. This wrapping is necessary because Berkeley
DB exceptions are checked exceptions, and the Java collections APl does not allow such
exceptions to be thrown.

When calling TransactionRunner.run, the unwrapped (nested) exception will be unwrapped
and thrown automatically. If you are not using TransactionRunner or if you are handling

9/9/2013

DB Collections Page 30

Library Version 11.2.5.3 The Basic Program

exceptions directly for some other reason, use the ExceptionUnwrapper.unwrap method to

get the nested exception. For example, this can be used to discover that an exception is a
RunRecoveryException as shown below.

import com.sleepycat.db.RunRecoveryException;
import com.sleepycat.util.ExceptionUnwrapper;

catch (Exception e)

{
e = ExceptionUnwrapper.unwrap(e);
if (e instanceof RunRecoveryException)
{
// follow recovery procedure
}
}

9/9/2013 DB Collections Page 31

Chapter 3. Using Secondary Indices

In the Basic example, each store has a single primary key. The Index example extends the
Basic example to add the use of secondary keys.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Opening Secondary Key Indices

Secondary indices or secondary databases are used to access a primary database by a key
other than the primary key. Recall that the Supplier Number field is the primary key of the
Supplier database. In this section, the Supplier City field will be used as a secondary lookup
key. Given a city value, we would like to be able to find the Suppliers in that city. Note that
more than one Supplier may be in the same city.

Both primary and secondary databases contain key-value records. The key of an index record
is the secondary key, and its value is the key of the associated record in the primary database.
When lookups by secondary key are performed, the associated record in the primary database
is transparently retrieved by its primary key and returned to the caller.

Secondary indices are maintained automatically when index key fields (the City field in this
case) are added, modified or removed in the records of the primary database. However, the
application must implement a SecondaryKeyCreator that extracts the index key from the
database record.

It is useful to contrast opening an secondary index with opening a primary database (as
described earlier in Opening and Closing Databases (page 15).

« A primary database may be associated with one or more secondary indices. A secondary
index is always associated with exactly one primary database.

» For a secondary index, a SecondaryKeyCreator must be implemented by the application to
extract the index key from the record of its associated primary database.

» A primary database is represented by a Database object and a secondary index is
represented by a SecondaryDatabase object. The SecondaryDatabase class extends the
Database class.

* When a SecondaryDatabase is created it is associated with a primary Database object and
a SecondaryKeyCreator.

The SampleDatabase class is extended to open the Supplier-by-City secondary key index.

import com.sleepycat.bind.serial.SerialSerialKeyCreator;
import com.sleepycat.db.SecondaryConfig;
import com.sleepycat.db.SecondaryDatabase;

public class SampleDatabase

{

9/9/2013

DB Collections Page 32

Library Version 11.2.5.3 Using Secondary Indices

private static final String SUPPLIER_CITY_INDEX =
"supplier_city_index";

private SecondaryDatabase supplierByCityDb;

public SampleDatabase(String homeDirectory)
throws DatabaseException, FileNotFoundException

{

SecondaryConfig secConfig = new SecondaryConfig();
secConfig.setTransactional(true);
secConfig.setAllowCreate(true);
secConfig.setType(DatabaseType.BTREE);
secConfig.setSortedDuplicates(true);

secConfig.setKeyCreator(
new SupplierByCityKeyCreator(javaCatalog,
SupplierKey.class,
SupplierData.class,
String.class));

supplierByCityDb = env.openSecondaryDatabase(null,
SUPPLIER_CITY_INDEX,
null,
supplierDb,
secConfig);

}

A SecondaryConfig object is used to configure the secondary database. The
SecondaryConfig class extends the DatabaseConfig class, and most steps for configuring a
secondary database are the same as for configuring a primary database. The main difference
in the example above is that the SecondaryConfig.setSortedDuplicates() method is
called to allow duplicate index keys. This is how more than one Supplier may be in the same
City. If this property is not specified, the default is that the index keys of all records must be
unique.

For a primary database, duplicate keys are not normally used since a primary database with
duplicate keys may not have any associated secondary indices. If primary database keys are
not unique, there is no way for a secondary key to reference a specific record in the primary
database.

Note that setSortedDuplicates() and not setUnsortedDuplicates() was called. Sorted
duplicates are always used for indices rather than unsorted duplicates, since sorting enables
optimized equality joins.

Opening a secondary key index requires creating a SecondaryKeyCreator. The
SupplierByCityKeyCreator class implements the SecondaryKeyCreator interface and will
be defined below.

9/9/2013

DB Collections Page 33

Library Version 11.2.5.3 Using Secondary Indices

The SecondaryDatabase object is opened last. If you compare the
openSecondaryDatabase() and openDatabase() methods you'll notice only two differences:

« openSecondaryDatabase() has an extra parameter for specifying the associated primary
database. The primary database is supplierDb in this case.

« The last parameter of openSecondaryDatabase() is a SecondaryConfig instead of a
DatabaseConfig.

How to use the secondary index to access records will be shown in a later section.

The application-defined SupplierByCityKeyCreator class is shown below. It was used above
to configure the secondary database.
public class SampleDatabase

{
private static class SupplierByCityKeyCreator
extends SerialSerialKeyCreator
{
private SupplierByCityKeyCreator(ClassCatalog catalog,
Class primaryKeyClass,
Class valueClass,
Class indexKeyClass)
{
super(catalog, primaryKeyClass, valueClass, indexKeyClass);
}
public Object createSecondaryKey(Object primaryKeyInput,
Object valueInput)
{
SupplierData supplierData = (SupplierData) valueInput;
return supplierData.getCity();
}
}
}

In general, a key creator class must implement the Second