QPDF Manual

For QPDF Version 10.3.0, March 4, 2021
Jay Berkenbilt

QPDF Manual: For QPDF Version 10.3.0, March 4, 2021

Jay Berkenbilt
Copyright © 2005-2020 Jay Berkenbilt

Table of Contents

General INFOMMELIONcoueei ettt ettt e et e ettt e et et e e e et e e e e et s \Y
L WhEE IS QPDIF? ottt ettt ettt a e 1
2. Building and InStalling QPDIFuuiiiiii ettt 2
2.1, SyStEM REQUITEIMENTSeeiti ettt et ettt ettt r et et e et et et e ea e e e naa e e ennan s 2

2.2, BUI INSITUCTIONS ...ttt ettt ettt ettt e ettt e ettt e et e et e e e e e st aeeeenbnaeeees 2

2.3, CIYPLO PrOVIGEIS ...ttt e e e et et n e et et e e et et e e e e aaa s 3
2.3.1. Build Support FOr Crypto PrOVIGEI'S it e e 3

2.3.2. Runtime Crypto Provider SEIECHIONooiiiiiiiiiiii e 4

2.3.3. Crypto Provider Information fOr DEVEIOPENSciiiiiieiiii e 4

2.3.4. Crypto Provider DeSigN NOESociiiiieeiiiii ettt ettt et e e et e eeeena e eeees 4

2.4, NOLES TOF PACKBOEI'S ... eteeti ettt ettt ettt et e et e et et e e et e e et et e e e e nba s 5

3. RUNNING QPDF ..ottt ettt e et a bt e et et e et et et e e e e e e e e eaaas 6
3.1 BBSIC INVOCELION ...ttt ettt ettt e et et e ettt e et et e et e 6
Ll EXIE SEBIUS .. oeevt et et e ettt ettt ettt ettt ettt et enn e e enaas 6

3.2, ShEll COMPIELION ...t ettt ettt e et e e e enanns 6

3.3, BASIC OPLIONS ...ttt ettt ettt ettt ettt ettt e et ea b 7

3.4, ENCIYPLON OPLIONS ... eieetti ettt ettt ettt ettt e e et ettt et e et s et e e b e e e et r et e abe e e e e nna e e ennans 11

3.5. Page SEECHiON OPLIONSccoeuuiiiiitiiee ettt ettt 14

3.6. Overlay and UNderfay OpPtIONScoeeuuueieiii et ettt et e e e e e e et e eeaai e eennes 16

3.7. Embedded Files/AttaChmentS OPLiONSuiiiiieeieiii e e e eeeens 17

3.8. Advanced ParSiNg OPLIONSoiiiiii ettt ettt ettt e e et 18

3.9. Advanced Transformation OPLIONSuuueiiuui ettt et e e e e 19

3.10. Testing, Inspection, and Debugging OPLioNSceeeruuiiieiieeiei e 24

311, UNICOOE PESSWOITS ...t ettt ettt ettt ettt ettt et e e et et e et e et e et e e e et ena e e e ennans 26

A, QDF IMOOE ...ttt ettt et et e e s 28
5. USING the QPDF LIDIary ...covuniiiiii ettt et e e e e e enaas 30
5.1. USING QPDF frOM Cr oottt e e et 30

5.2. Using QPDF from Other [aNQUBOEScieitiieiiii ettt et eeenens 30

5.3. A Note About Unicode File NBMESuuiiiiiii ettt 30

B. QPDEF JSONoeuiiiiiii ettt ettt ettt e ettt ettt ettt E ettt et e e et e e eaa s 32
B. 1. OVEIVIBUW ...ttt ettt oottt et e et e a et et a et e e e a e e naaas 32

6.2, JSON GUEIBINTEESeevteiet ettt ettt et ettt et et et e e et e et et et r et et r et e e et r e e et e e e e e ene s 32

6.3. Limitations of JSON REDIESENIALIONc.uuuiiiiiiiiee it 33

6.4. JISON: SPECial CONSIAEIELIONSceeveieieiti ettt ettt ettt ettt e et e et et e e e et e e e ebanes 33

7. DeSIgN @nd Library NOLEScouuiiiiiii ettt ettt e e et e e e b 35
4% W [L oo (8 1o o EO PP P PP UPPPT 35

7.2, DESIGN GOBIS ...ttt ettt ettt e e e e e e e et e aeae 35

7.3 HEIPE ClaSSES ...ttt ettt ettt e 36

7.4, IMPIEMENTELION NOES ...ttt ettt e et e e et e e e e aba s 37

7.5, CBSNG POIICY ...ttt e e e e 38

A = 0ol g (o o PSPPSR UPPPTT 39

7.7. Random NUMDEr GENEIELIONoiieieieiiii et et e e e e e 40

7.8. Adding and REMOVING PaOESuiiiiiiiiieeiii ettt et e et e e e et e eeena e eene 40

7.9. Reserving ObJECE NUMDEIScouuiiieiii ettt ettt et e e e an e e ennans 40

7.10. Copying Objects From Other PDF FlEScc.uuiiiiiii et 41

711 WIEING PDF FIIES ..ot et e e 41

712, FIIEIEd SHIEAIMS ...ttt ettt e e et e et e e e et e e et ab e e e e na s 42

L M 0= 4 (oo E PSP TUPPPTTR 43
8.1. BasiC Strategy fOr LINEANZAIIONuuiiiiii ettt ettt et e e e e nae e eenees 43

8.2. Preparing FOr LiNEAITZALIONiiiiiiieeeiii et e e et e e 43

8.3, OPLIMIZALION ...ttt et ettt ettt 43

QPDF Manual

8.4. Writing LiNEarized FIlESciiuiiii i e e e e e aaaas 44

8.5. Calculating Lin€ariZation D Auveiuueeiiieiiiie e e e e e e et e e e e e e e et e et e e et e e st e e eanaeeaneees 44

8.6. KNOWN 1SSUES With LINEAIZALIONvuuiiiiiiieeiiii e e e e e e 44

LA D= o 18 o (o 11 0T TN 1N (o = 45

9. Object and CrosS-REFEIENCE SITEAMS ... c.uuiiii e e e e e e e e e e e e et e et e e et e e et e eeanaeeaneees 46
S I @ o=l S =0 P 46

0.2. CrosS-REFEIENCE SLIEAIMS ...ttt et e e et et e et e et e e e eeenn s 46
0.2.1. Cross-Reference Stream Dataoveeuiiiiiiiiee et 47

9.3. Implications for Linearized FIlESociiii i e e e e 47

9.4, IMPIEMENAiON NOLESuu et e e e e e e e e e e et e e et e e et e e et e et e eanneeaens 48

Y (= 1= = s = N o] (=PSRN 49
B. UpPgrading from 2.0 10 2.1uiiii i et r e 80
(O U oo =" 1 0T i (o T 0 S 81
[I o | "o [o 1 (o 1 X 0 82

General Information

QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://gpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF is licensed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0] (the
"License"). Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

Versions of gpdf prior to version 7 were released under the terms of the Artistic License, version 2.0 [https://
opensource.org/licenses/Artistic-2.0]. At your option, you may continue to consider gpdf to be licensed under those
terms. The Apache License 2.0 permits everything that the Artistic License 2.0 permits but is slightly less restrictive.
Allowing the Artistic License to continue being used is primary to help people who may have to get specific approval
to use gpdf in their products.

QPDF isintentionally released with a permissive license. However, if there is some reason that the licensing terms
don't work for your requirements, please feel free to contact the copyright holder to make other arrangements.

QPDF was originaly created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which | am
very grateful. | have made considerable enhancementsto it since that time. | feel fortunate to have worked for people
who would make such adecision. Thiswork would not have been possible without their support.

http://qpdf.sourceforge.net/
https://github.com/qpdf/qpdf
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/Artistic-2.0
https://opensource.org/licenses/Artistic-2.0
https://opensource.org/licenses/Artistic-2.0
http://www.apexcovantage.com
http://www.apexcovantage.com

Chapter 1. What is QPDF?

QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pagesin a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off al the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. Y ou are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it isintentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look el sewhere. However, once you have avalid PDF file, QPDF can be used to transform that file in ways
perhaps your origina PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

Chapter 2. Building and Installing
QPDF

This chapter describes how to build and install gpdf. Please see a so the README.md and INSTALL filesin the source
distribution.

2.1. System Requirements

The gpdf package has few externa dependencies. In order to build gpdf, the following packages are required:
» A C++ compiler that supports C++-14.

* zlib: http://www.zlib.net/

* jpeg: http://www.ijg.org/files/ or https://libjpeg-turbo.org/

» Recommended but not required: gnutls: https.//www.gnutls.org/ to be able to use the gnutls crypto provider, and/or
openssl: https://openssl.org/ to be able to use the openssl crypto provider.

* gnu make 3.81 or newer: http://www.gnu.org/software/make

* perl version 5.8 or newer: http://www.perl.org/; required for running the test suite. Starting with gpdf version 9.1.1,
perl isno longer required at runtime.

» GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that thisis
the version of diff present on virtually all GNU/Linux systems. Thisis required because the test suite uses diff -u.

Part of gpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. Theimage comparison tests are disabled by default. Thosetestsare not required for determining correctness of
aqpdf build if you have not modified the code since the test suite al so contains expected output filesthat are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help devel operslook into the contents of PDFfiles. If you are making deep changesto thelibrary that cause
changes in the contents of the files that gpdf generates, then you should enable the image comparison tests. Enable
them by running configur e with the --enable-test-compar e-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use gpdf.

« libtiff: http://www.remotesensing.org/libtiff/
» GhostScript version 8.60 or newer: http://www.ghostscript.com
If you do not enable this, then you do not need to have tiff and ghostscript.

Pre-built documentation is distributed with gpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http:/
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 or higher.

2.2. Build Instructions

Building gpdf on UNIX is generally just a matter of running

http://www.zlib.net/
http://www.ijg.org/files/
https://libjpeg-turbo.org/
https://www.gnutls.org/
https://openssl.org/
http://www.gnu.org/software/make
http://www.perl.org/
http://www.gnu.org/software/diffutils/
http://www.remotesensing.org/libtiff/
http://www.ghostscript.com
http://downloads.sourceforge.net/docbook/
http://downloads.sourceforge.net/docbook/
http://xml.apache.org/fop/
http://xml.apache.org/fop/

Building and Installing QPDF

./ configure
nmake

Y ou can aso run make check to run the test suite and makeinstall to install. Please run ./configur e --help for options
on what can be configured. Y ou can also set the value of DESTDIR during installation to install to atemporary location,
as is common with many open source packages. Please see also the README.md and INSTALL files in the source
distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.md in the source
distribution. Y ou can also download a binary distribution for Windows. Thereisaport of gpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. Thisis aso discussed in more detail in README-windows.md.

Whilewchar _t ispart of the C++ standard, gpdf usesit in only one place in the public API, and it's just in a helper
function. It ispossibleto build gpdf on asystem that doesn't havewchar _t , andit'salso possibleto compile aprogram
that uses gpdf on asystemwithout wchar _t aslong asyou don't call that one method. Thisisavery unusual situation.
For a detailed discussion, please see the top-level README.md file in gpdf's source distribution.

There are some other things you can do with the build. Although gpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
commentsin the top-level Makefile.

2.3. Crypto Providers

Starting with qpdf 9.1.0, the gpdf library can be built with multiple implementations of providers of cryptographic
functions, which we refer to as“crypto providers.” At the time of writing, a crypto implementation must provide MD5
and SHA2 (256, 384, and 512-bit) hashes and RC4 and AES256 with and without CBC encryption. In the future, if
digital signature is added to gpdf, there may be additional requirements beyond this.

Starting with gpdf version 9.1.0, the available implementationsarenat i ve and gnut | s. In gpdf 10.0.0, openssl
was added. Additional implementations may be added if needed. It is also possible for a developer to provide their
own implementation without modifying the gpdf library.

2.3.1. Build Support For Crypto Providers

When building with gpdf's build system, crypto providers can be enabled at build time using various ./configure
options. The default behavior isfor ./configur eto discover which crypto providers can be supported based on available
externa libraries, to build all available crypto providers, and to use an external provider as the default over the native
one. This behavior can be changed with the following flags to ./configure:

» --enable-crypto-x (where x is a supported crypto provider): enable the x crypto provider, requiring any external
dependencies it needs

» --disable-crypto-x: disable the x provider, and do not link against its dependencies even if they are available
» --with-default-crypto=x: make x the default provider even if ahigher priority oneis available

» --disable-implicit-crypto: only build crypto providers that are explicitly requested with an --enable-crypto-x
option

For example, if you want to guarantee that the gnutls crypto provider is used and that the native provider is not built,
you could run ./configur e --enable-crypto-gnutls --disable-implicit-crypto.

If you build gpdf using your own build system, in order for qpdf to work at all, you need to enable at |east one crypto
provider. The file libgpdf/qpdf/gpdf-config.h.in provides macros DEFAULT _CRYPTQ, whose value must be a string

Building and Installing QPDF

naming the default crypto provider, and various symbols starting with USE_CRYPTO _, at |least one of which hasto be
enabled. Additionally, you must compile the source files that implement a crypto provider. To get alist of thosefiles,
look at libgpdf/build.mk. If you want to omit a particular crypto provider, as long as its USE_CRYPTO_ symbol is
undefined, you can completely ignore the source files that belong to a particular crypto provider. Additionally, crypto
providersmay havetheir own external dependenciesthat can be omitted if the crypto provider isnot used. For example,
if you are building gpdf yourself and are using an environment that does not support gnutls or openssl, you can ensure
that USE_CRYPTO_NATI VE isdefined, USE_CRYPTO_GNUTLS isnot defined, and DEFAULT_CRYPTOisdefined
to" nati ve". Then you must include the source files used in the native implementation, some of which were added
or renamed from earlier versions, to your build, and you can ignore QPDFCrypto_gnutls.cc. Always consult libgpdf/
build.mk to get the list of source files you need to build.

2.3.2. Runtime Crypto Provider Selection

Y ou can use the --show-cr ypto option to gpdf to get alist of available crypto providers. The default provider isalways
listed first, and the rest are listed in lexical order. Each crypto provider is listed on aline by itself with no other text,
enabling the output of this command to be used easily in scripts.

You can override which crypto provider is used by setting the QPDF_CRYPTO_PROVI DER environment variable.
There are few reasons to ever do this, but you might want to do it if you were explicitly trying to compare behavior
of two different crypto providers while testing performance or reproducing a bug. It could also be useful for people
who are implementing their own crypto providers.

2.3.3. Crypto Provider Information for Developers

If you are writing code that uses libgpdf and you want to force a certain crypto provider to be used, you can call
the method QPDFCryptoProvider:: setDefaultProvider. The argument is the name of a built-in or devel oper-supplied
provider. To add your own crypto provider, you have to create a class derived from QPDFCryptolmpl and register
it with QPDFCryptoProvider. For additional information, see comments in include/qpdf/QPDFCryptolmpl.hh.

2.3.4. Crypto Provider Design Notes

This section describes afew bits of rationale for why the crypto provider interface was set up theway it was. Y ou don't
need to know any of thisinformation, but it's provided for the record and in case it's interesting.

Asagenerd rule, | want to avoid as much as possible including large blocks of code that are conditionally compiled
such that, in most builds, some codeis never built. Thisis dangerous because it makesit very easy for invalid code to
creep in unnoticed. As such, | want it to be possible to build gpdf with all available crypto providers, and thisis the
way | build gpdf for local development. At the same time, if a particular packager feels that it is a security liability
for gpdf to use crypto functionality from other than a library that gets considerable scrutiny for this specific purpose
(such as gnutls, openssl, or nettle), then | want to give that packager the ability to completely disable gpdf's native
implementation. Or if someone wants to avoid adding a dependency on one of the external crypto providers, | don't
want the availability of the provider to impose additional external dependencieswithin that environment. Both of these
are situations that | know to be true for some users of gpdf.

| want registration and selection of crypto providers to be thread-safe, and | want it to work deterministically for
a developer to provide their own crypto provider and be able to set it up as the default. This was the primary
motivation behind requiring C++-11 as doing so enabled me to exploit the guaranteed thread safety of local block
staticinitialization. The QPDFCryptoProvider class uses asingleton pattern with thread-safe initialization to create
the singleton instance of QPDFCryptoProvider and exposes only static methods in its public interface. In thisway,
if adeveloper wantsto call any QPDFCryptoProvider methods, thelibrary guaranteesthe QPDFCryptoProvider
is fully initialized and all built-in crypto providers are registered. Making QPDFCryptoProvider actually know
about al the built-in providers may seem a hit sad at first, but this choice makes it extremely clear exactly what the
initialization behavior is. There's no question about provider implementati ons automatically registering themselvesina

Building and Installing QPDF

nondeterministic order. It also means that implementations do not need to know anything about the provider interface,
which makes them easier to test in isolation. Another advantage of this approach is that a developer who wants to
develop their own crypto provider can do so in complete isolation from the gpdf library and, with just two calls, can
make qgpdf use their provider in their application. If they decided to contribute their code, plugging it into the gpdf
library would require avery small change to gpdf's source code.

The decision to make the crypto provider selectable at runtime was one | struggled with alittle, but | decided to do
it for various reasons. Allowing an end user to switch crypto providers easily could be very useful for reproducing a
potential bug. If a user reports a bug that some cryptographic thing is broken, | can easily ask that person to try with
the QPDF_CRYPTO_PROVI DER variable set to different values. The same could apply in the event of a performance
problem. Thisaso makesit easier for gpdf's own test suite to exercise code with different providers without having to
make every program that linkswith gpdf aware of the possibility of multiple providers. In gpdf's continuousintegration
environment, the entire test suiteis run for each supported crypto provider. Thisis made simple by being able to select
the provider using an environment variable.

Finally, making crypto providers selectable in this way establish a pattern that | may follow again in the future
for stream filter providers. One could imagine a future enhancement where someone could provide their own
implementationsfor basic filterslike/ FI at eDecode or for other filtersthat gpdf doesn't support. Implementing the
registration functions and internal storage of registered providers was also easier using C++-11'sfunctional interfaces,
which was another reason to require C++-11 at thistime.

2.4. Notes for Packagers

If you are packaging gpdf for an operating system distribution, here are some things you may want to keep in mind:

 Starting in gpdf version 9.1.1, gpdf nolonger has aruntime dependency on perl. Thisisbecause fix-qdf wasrewritten
in C++. However, gpdf still has a build-time dependency on perl.

» Makesureyou are getting the intended behavior with regard to crypto providers. Read Section 2.3.1, “Build Support
For Crypto Providers’, page 3 for details.

» Passing --enable-show-failed-test-output to ./configure will cause any failed test output to be written to the
console. This can be very useful for seeing test failures generated by autobuilders where you can't access gtest.log
after the fact.

 If gpdf's build environment detects the presence of autoconf and related tools, it will check to ensure that
automatically generated fil es are up-to-date with recorded checksums and fail if it detectsadiscrepancy. Thisfeature
isintended to prevent you from accidentally forgetting to regenerate automatic files after modifying their sources. If
your packaging environment automatically refreshes automatic files, it can cause this check to fail. Suppress gpdf's
checks by passing --disable-check-autofilesto /.configure. Thisis safe since gpdf's autogen.sh just runs autotools
in the normal way.

» QPDF's make install does not install completion files by default, but as a packager, it's good if you install them
wherever your distribution expects such files to go. You can find completion files to install in the completions
directory.

» Packagers are encouraged to install the source files from the examples directory along with gpdf development
packages.

Chapter 3. Running QPDF

This chapter describes how to run the gpdf program from the command line.

3.1. Basic Invocation

When running gpdf, the basic invocation is as follows:

gpdf [options] infilenane [outfil ename]

Thisconverts PDFfileinfilenameto PDFfile outfilename. The output fileisfunctionally identical to theinput file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options bel ow. In place of infilename, the parameter --empty may be specified. This
causes gpdf to use adummy input file that contains zero pages. The only normal use case for using --empty would beif
you were going to add pages from another source, as discussed in Section 3.5, “ Page Selection Options’, page 14.

If @filename appears asaword anywherein the command-line, it will beread line by line, and each line will be treated
as a command-line argument. The @- option allows arguments to be read from standard input. This allows gpdf to
be invoked with an arbitrary number of arbitrarily long arguments. It is also very useful for avoiding having to pass
passwords on the command line. Note that the @filename can't appear in the middl e of an argument, so constructs such
as--arg=@option will not work. Y ouwould haveto include the argument and its optionstogether in the argumentsfile.

outfilename does not have to be seekabl e, even when generating linearized files. Specifying “-” asoutfilename means
to write to standard output. If you want to overwrite the input file with the output, use the option --r eplace-input and
omit the output file name. Y ou can't specify the same file as both the input and the output. If you do this, gpdf will
tell you about the --r eplace-input option.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.1.1. Exit Status

The exit status of qpdf may be interpreted as follows:

 0: no errors or warnings were found. The file may still have problems gpdf can't detect. If --war ning-exit-0 was
specified, exit status O is used even if there are warnings.

» 2: errors were found. gpdf was not able to fully processthefile.

* 3: gpdf encountered problemsthat it was able to recover from. In some cases, the resulting file may still be damaged.
Notethat gpdf still exitswith status 3 if it findswarnings even when --no-war n is specified. With --war ning-exit-0,
warnings without errors exit with status 0 instead of 3.

Note that gpdf never exists with status 1. If you get an exit status of 1, it was something else, like the shell not being
able to find or execute gpdf.

3.2. Shell Completion

Starting in gpdf version 8.3.0, gpdf provides its own completion support for zsh and bash. You can enable bash
completion with eval $(qpdf --completion-bash) and zsh completion with eval $(gpdf --completion-zsh). If gpdf is
not in your path, you should invoke it above with an absolute path. If you invoke it with arelative path, it will warn
you, and the completion won't work if you'rein adifferent directory.

Running QPDF

gpdf will use ar gv[0] to figure out where its executable is. This may produce unwanted results in some cases,
especialy if you are trying to use completion with copy of gpdf that is built from source. Y ou can specify afull path
to the gpdf you want to use for completion in the QPDF_ EXECUTABLE environment variable.

3.3. Basic Options

The following options are the most common ones and perform commonly needed transformations.
--help
Display command-line invocation help.
--version
Display the current version of gpadf.
--copyright
Show detailed copyright information.
--show-crypto

Show alist of available crypto providers, each on aline by itself. The default provider is always listed first. See
Section 2.3, “Crypto Providers’, page 3 for more information about crypto providers.

--completion-bash

Output a completion command you can eval to enable shell completion from bash.
--completion-zsh

Output a completion command you can eval to enable shell completion from zsh.
--passwor d=passwor d

Specifies a password for accessing encrypted files. To read the password from a file or standard input, you
can use --passwor d-file, added in gpdf 10.2. Note that you can also use @filename or @- as described above
to put the password in a file or pass it via standard input, but you would do so by specifying the entire --
password=passwor d option in the file. Syntax such as --passwor d=@filename won't work since @filename
is not recognized in the middle of an argument.

--password-file=f i | enane

Reads the first line from the specified file and uses it as the password for accessing encrypted files. f i | enane
may be - to read the password from standard input. Note that, in this case, the password is echoed and there is
no prompt, so use with caution.

--is-encrypted

Silently exit with status O if the file is encrypted or status 2 if the file is not encrypted. This is useful for shell
scripts. Other options are ignored if thisis given. This option is mutually exclusive with --requir es-passwor d.
Both this option and --r equir es-passwor d exit with status 2 for non-encrypted files.

--requires-password

Silently exit with status O if a password (other than as supplied) is required. Exit with status 2 if the file is not
encrypted. Exit with status 3 if the file is encrypted but requires no password or the correct password has been

Running QPDF

supplied. Thisis useful for shell scripts. Note that any supplied password is used when opening the file. When
used with a --password option, this option can be used to check the correctness of the password. In that case,
an exit status of 3 means the file works with the supplied password. This option is mutually exclusive with --is-
encrypted. Both this option and --is-encrypted exit with status 2 for non-encrypted files.

--verbose
Increase verbosity of output. For now, thisjust prints some indication of any file that it creates.

--progress
Indicate progress while writing files.

--no-warn

Suppress writing of warnings to stderr. If warnings were detected and suppressed, gpdf will still exit with exit
code 3. See also --war ning-exit-0.

--war ning-exit-0

If warnings are found but no errors, exit with exit code 0 instead 3. When combined with --no-war n, the effect
isfor qpdf to completely ignore warnings.

--linearize
Causes generation of alinearized (web-optimized) output file.

--replace-input
If specified, the output file name should be omitted. Thisoptiontells gpdf to replacetheinput filewith the output. It
doesthisby writingtoi nf i | enane.~qpdf-temp# and, when done, overwriting the input file with the temporary
file. If there were any warnings, the original input issaved asi nf i | enane.~qpdf-orig.

--copy-encryption=file
Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encryption-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from afile also copiesthefirst half of / | Dfrom thefile since thisis part of the encryption
parameters.

--encryption-file-passwor d=password
If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does
not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from afile even if you don't know the file's owner password.

--encrypt options --

Causes generation an encrypted output file. Please see Section 3.4, “Encryption Options’, page 11 for details
on how to specify encryption parameters.

--decrypt

Removes any encryption on thefile. A password must be supplied if the file is password protected.

Running QPDF

--passwor d-is-hex-key

Overrides the usual computation/retrieval of the PDF file's encryption key from user/owner password with an
explicit specification of the encryption key. When this option is specified, the argument to the --password option
isinterpreted as a hexadecimal-encoded key value. Thisonly appliesto the password used to open the main input
file. It does not apply to other files opened by --pages or other options or to files being written.

Most users will never have a need for this option, and no standard viewers support this mode of operation, but
it can be useful for forensic or investigatory purposes. For example, if a PDF file is encrypted with an unknown
password, a brute-force attack using the key directly is sometimes more efficient than one using the password.
Also, if afileis heavily damaged, it may be possible to derive the encryption key and recover parts of the file
using it directly. To expose the encryption key used by an encrypted file that you can open normally, use the --
show-encryption-key option.

--suppr ess-passwor d-r ecovery

Ordinarily, gpdf attempts to automatically compensate for passwords specified in the wrong character encoding.
This option suppresses that behavior. Under normal conditions, there are no reasons to use this option. See
Section 3.11, “Unicode Passwords’, page 26 for a discussion

--passwor d-mode=node

This option can be used to fine-tune how gpdf interprets Unicode (non-ASCII) password strings passed on
the command line. With the exception of the hex-bytes mode, these only apply to passwords provided when
encrypting files. The hex-bytes mode also applies to passwords specified for reading files. For additional
discussion of the supported password modes and when you might want to use them, see Section 3.11, “Unicode
Passwords’, page 26. The following modes are supported:

 auto: Automatically determine whether the specified password is a properly encoded Unicode (UTF-8) string,
and transcode it as required by the PDF spec based on the type encryption being applied. On Windows starting
with version 8.4.0, and on almost all other modern platforms, incoming passwords will be properly encoded in
UTF-8, so thisis amost aways what you want.

* unicode: Tells gpdf that the incoming password is UTF-8, overriding whatever its automatic detection
determines. The only difference between this mode and auto is that gpdf will fail with an error message if the
password is hot valid UTF-8 instead of falling back to bytes mode with awarning.

 bytes: Interpret the password as aliteral byte string. For non-Windows platforms, thisiswhat versions of gpdf
prior to 8.4.0 did. For Windows platforms, there is no way to specify strings of binary data on the command
line directly, but you can use the @filename option to do it, in which case this option forces gpdf to respect
the string of bytes as provided. This option will allow you to encrypt PDF files with passwords that will not
be usable by other readers.

» hex-bytes: Interpret the password as ahex-encoded string. Thisprovidesaway to passbinary dataasapassword
on all platformsincluding Windows. Aswith bytes, this option may allow creation of filesthat can't be opened
by other readers. This mode affects gpdf's interpretation of passwords specified for decrypting files as well
as for encrypting them. It makes it possible to specify strings that are encoded in some manner other than the
system's default encoding.

--rotate=[+|-]angl€[: page-r ange]

Apply rotation to specified pages. The page-range portion of the option value has the same format as page ranges
in Section 3.5, “Page Selection Options’, page 14. If the page range is omitted, the rotation is applied to all
pages. The angle portion of the parameter may be either 0, 90, 180, or 270. If preceded by + or -, the angle is
added to or subtracted from the specified pages original rotations. Thisisa most awayswhat you want. Otherwise
the pages rotations are set to the exact value, which may cause the appearances of the pages to be inconsistent,

Running QPDF

especialy for scans. For example, the command qpdf in.pdf out.pdf --r otate=+90:2,4,6 --r otate=180: 7-8 would
rotate pages 2, 4, and 6 90 degrees clockwise from their original rotation and force the rotation of pages 7 through
910 180 degreesregardless of their original rotation, and the command gpdf in.pdf out.pdf --r otate=+180 would
rotate all pages by 180 degrees.

--keep-files-open=[yn]

This option controls whether gpdf keeps individual files open while merging. Prior to version 8.1.0, gpdf always
kept al files open, but this meant that the number of files that could be merged was limited by the operating
system's open file limit. Version 8.1.0 opened files as they were referenced and closed them after each read, but
this caused amajor performanceimpact. Version 8.2.0 optimized the performance but did so in away that, for local
file systems, there was a small but unavoidable performance hit, but for networked file systems, the performance
impact could be very high. Starting with version 8.2.1, the default behavior is that files are kept open if no more
than 200 files are specified, but that the behavior can be explicitly overridden with the --keep-files-open flag. If
you are merging more than 200 files but |ess than the operating system’'s max open fileslimit, you may want to use
--keep-files-open=y, especially if working over anetworked file system. If you are using alocal file system where
the overhead is low and you might sometimes merge more than the OS limit's number of files from a script and
are not worried about a few seconds additional processing time, you may want to specify --keep-files-open=n.
The threshold for switching may be changed from the default 200 with the --keep-files-open-threshold option.

--keep-files-open-threshold=count

If specified, overridesthe default value of 200 used as the threshold for gpdf deciding whether or not to keep files
open. See --keep-files-open for details.

--pages options --

Select specific pages from one or more input files. See Section 3.5, “Page Selection Options’, page 14 for
details on how to do page selection (splitting and merging).

--collate=n

When specified, collate rather than concatenate pages from files specified with --pages. With anumeric argument,
collate in groups of n. The default is 1. See Section 3.5, “Page Selection Options’, page 14 for additional
details.

--flatten-rotation

For each page that is rotated using the / Rot at e key in the page's dictionary, remove the / Rot at e key and
implement the identical rotation semantics by modifying the page's contents. This option can be useful to prepare
filesfor buggy PDF applications that don't properly handle rotated pages.

--split-pages=[n]

Write each group of n pages to a separate output file. If n isnot specified, create single pages. Output file names
are generated as follows:

« If thestring %@ appearsin the output file name, it is replaced with arange of zero-padded page numbers starting
from 1.

» Otherwise, if the output file name endsin .pdf (caseinsensitive), a zero-padded page range, preceded by adash,
isinserted before the file extension.

» Otherwise, the file name is appended with a zero-padded page range preceded by a dash.

Page ranges are a single number in the case of single-page groups or two numbers separated by a dash otherwise.
For example, if infile.pdf has 12 pages

10

Running QPDF

 gpdf --split-pages infile.pdf % d-out would generate files 01-out through 12-out
» gpdf --split-pages=2 infile.pdf outfile.pdf would generate files outfile-01-02.pdf through outfile-11-12.pdf
» gpdf --split-pagesinfile.pdf something.elsewould generatefiles something.else-01 through something.el se-12

Note that outlines, threads, and other global features of the original PDF file are not preserved. For each page
of output, this option creates an empty PDF and copies a single page from the output into it. If you require the
global data, you will have to run qpdf with the --pages option once for each file. Using --split-pages is much
faster if you don't require the global data.

--overlay options --

Overlay pages from another file onto the output pages. See Section 3.6, “Overlay and Underlay
Options’, page 16 for details on overlay/underlay.

--underlay options --

Overlay pages from another file onto the output pages. See Section 3.6, “Overlay and Underlay
Options’, page 16 for details on overlay/underlay.

Password-protected files may be opened by specifying a password. By default, gpdf will preserve any encryption data
associated with afile. If --decrypt is specified, gpdf will attempt to remove any encryption information. If --encrypt
is specified, gpdf will replace the document's encryption parameters with whatever is specified.

Note that gpdf does not obey encryption restrictions already imposed on thefile. Doing so would be meaningless since
gpdf can be used to remove encryption from thefile entirely. Thisfunctionality isnot intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

Prior to 8.4.0, in the case of passwordsthat contain charactersthat fall outside of 7-bit US-ASCI|I, gpdf |eft the burden
of supplying properly encoded encryption and decryption passwords to the user. Starting in gpdf 8.4.0, qpdf doesthis
automatically in most cases. For an in-depth discussion, please see Section 3.11, “Unicode Passwords’, page 26.
Previous versions of this manual described workarounds using the iconv command. Such workarounds are no longer
required or recommended with gpdf 8.4.0. However, for backward compatibility, qpdf attempts to detect those
workarounds and do the right thing in most cases.

3.4. Encryption Options

To change the encryption parameters of afile, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--" terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings. Starting in gpdf 10.2, gpdf defaults
to not allowing creation of PDF files with a non-empty user password, an empty owner password, and a 256-bit key
since such files can be opened with no password. If you want to create such files, specify the encryption option --
allow-insecur e, as described below.

The value for key- | engt h may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default isto be fully permissive.

If key- | engt h is40, the following restriction options are available;
--print=[yn]

Determines whether or not to allow printing.

11

Running QPDF

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key- | engt h is 128, the following restriction options are available;

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired. The gpdf library disregards this field when
AES is used or when 256-hit encryption is used. Y ou should really never disable accessihility, but qpdf lets you
doitin caseyou need to configure afile thisway for testing purposes. The PDF spec says that conforming readers
should disregard this permission and always allow accessibility.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--assemble=[yn]
Determines whether document assembly (rotation and reordering of pages) is allowed.

--annotate=[yn]

Determines whether modifying annotationsis allowed. Thisincludes adding comments and filling in form fields.
Also alows editing of form fields if --modify-other=y isgiven.

--form=[yn]
Determines whether filling form fieldsis allowed.
--modify-other=[yn]
Allow all document editing except those controlled separately by the --assemble, --annotate, and --for m options.
--print=pri nt - opt
Controls printing access. pr i nt - opt may be one of the following:
e full: alow full printing
* low: alow low-resolution printing only
* none: disalow printing
--modify=nodi f y- opt

Controls modify access. This way of controlling modify access has less granularity than new options added in
gpdf 8.4. nodi f y- opt may be one of the following:

12

Running QPDF

« all: alow full document modification

 annotate: allow comment authoring, form operations, and document assembly

 form: alow form field fill-in and signing and document assembly

 assembly: alow document assembly only

* none: alow no modifications

Using the --modify option does not alow you to create certain combinations of permissions such as allowing

form filling but not allowing document assembly. Starting with gpdf 8.4, you can either just use the other options
to control fieldsindividually, or you can use something like --modify=for m --assembly=n to fine tune.

--cleartext-metadata

If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]

If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to beat least 1.6.

--allow-insecur e

From gpdf 10.2, gpdf defaults to not allowing creation of PDF files where the user password is non-empty, the
owner password isempty, and a256-bit key isin use. Files created in thisway areinsecure sincethey can be opened
without a password. Users would ordinarily never want to create such files. If you are using gpdf to intentionally
created strange files for testing (adefinite valid use of gpdf!), this option allows you to create such insecure files.

--force-V4

Use of this option forcesthe/ V and / R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing gpdf itself. This option also forces the PDF version to be at least 1.5.

If key- | engt his256, theminimum PDF versionis 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes
Thisoption is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

--force-V4
Thisoption is not available with 256 keys.

--force-R5
If specified, gpdf setsthe minimum versionto 1.7 at extension level 3 and writesthe deprecated encryption format
used by Acrobat version I X. This option should not be used in practice to generate PDF filesthat will bein general

use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in thisway.

The default for each permission option isto be fully permissive.

13

Running QPDF

3.5. Page Selection Options

Starting with gpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

--pages input-file [--password=password] [page-range] [...] --

Multiple input files may be specified. Each oneis given asthe name of theinput file, an optional password (if required
to open thefile), and the range of pages. Note that “--" terminates parsing of page selection flags.

Starting with gpf 8.4, the special input file name “.” can be used shortcut for the primary input filename.

For each file that pages should be taken from, specify the file, a password needed to open thefile (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If afile that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with gpdf 5.0.0, it is possible to omit the page range. If gpdf sees avaluein the place where it expects a page
range and that valueis not avalid range but is avalid file name, gpdf will implicitly use the range 1- z, meaning that
it will include all pagesin thefile. This makesit possible to easily combine all pagesin a set of files with acommand
like qpdf --empty out.pdf --pages *.pdf --.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z" represents the last page. A number preceded by an “r” indicates to count from the end, so
r 3- r 1 would be the last three pages of the document. Pages can appear in any order. Ranges can appear with ahigh
number followed by alow number, which causes the pages to appear in reverse. Numbers may be repeated in a page
range. A page range may be optionally appended with : even or : odd to indicate only the even or odd pages in
the given range. Note that even and odd refer to the positions within the specified, range, not whether the original
number is even or odd.

Example page ranges:

* 1,3,5-9,15-12:pages 1, 3,5,6,7, 8,9, 15, 14, 13, and 12 in that order.
e z-1:dl pagesin the document in reverse

e r 3-r 1: thelast three pages of the document

* r1-r 3: thelast three pages of the document in reverse order

* 1-20: even: even pagesfrom 2 to 20

* 5,7-9,12: odd: pages 5, 8, and, 12, which are the pages in odd positions from among the original range, which
represents pages 5, 7, 8, 9, and 12.

Starting in gpdf version 8.3, you can specify the --collate option. Note that this option is specified outside of --
pages ... --. When --collate is specified, it changes the meaning of --pages so that the specified files, as modified by
page ranges, are collated rather than concatenated. For example, if you add the files odd.pdf and even.pdf containing
odd and even pages of a document respectively, you could run gpdf --collate odd.pdf --pages odd.pdf even.pdf --
all.pdf to collate the pages. This would pick page 1 from odd, page 1 from even, page 2 from odd, page 2 from even,
etc. until all pages have been included. Any number of files and page ranges can be specified. If any file has fewer
pages, that fileis just skipped when its pages have al been included. For example, if you ran gpdf --collate --empty
--pages a.pdf 1-5 b.pdf 6-4 c.pdf r 1 -- out.pdf, you would get the following pagesin this order:

14

Running QPDF

e apdf page 1
* b.pdf page 6
 c.pdf last page
» apdf page 2
* b.pdf page 5
e apdf page 3
* b.pdf page 4
* apdf page4
» apdf page5

Starting in qpdf version 10.2, you may specify a numeric argument to --collate. With --collate=n, pull groups of n
pages from each file, again, stopping when there are no more pages. For example, if you ran gpdf --collate=2 --empty
--pages a.pdf 1-5 b.pdf 6-4 c.pdf r1 -- out.pdf, you would get the following pagesin this order:

e apdf page 1
e apdf page 2
* b.pdf page 6
* b.pdf page 5
 c.pdf last page
e apdf page 3
» apdf page 4
* b.pdf page 4
» apdf page5

Starting in gpdf version 8.3, when you split and merge files, any page labels (page numbers) are preserved in the
final file. It is expected that more document features will be preserved by splitting and merging. In the mean time,
semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point to
actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output
filewill work, and remaining bookmarkswill not work. A future version of gpdf may do a better job at handling these
issues. (Note that the gpdf library already contains all of the APIs required in order to implement this in your own
application if you need it.) In the mean time, you can always use --empty as the primary input file to avoid copying
all of that from the first file. For example, to take pages 1 through 5 from ainfile.pdf while preserving al metadata
associated with that file, you could use

gpdf infile.pdf --pages . 1-5 -- outfile. pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

gpdf --enpty --pages infile.pdf 1-5 -- outfil e. pdf

15

Running QPDF

If you wanted to take pages 1-5 from filel.pdf and pages 11-15 from file2.pdf in reverse, you would run

gpdf filel.pdf --pages filel.pdf 1-5 . 15-11 -- outfile. pdf

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop document-level metadata but preserve encryption, you
would use

gpdf --enpty --copy-encryption=encrypted. pdf --encryption-fil e-password=pass
--pages encrypted. pdf --password=pass 1 ./encrypted. pdf --password=pass 1 --
outfile. pdf

Note that we had to specify the password all three times because giving a password as --encr yption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

Prior to version 8.4, it was not possible to specify the same page from the same file directly more than once, and the
workaround of specifying the same file in more than one way was required. Version 8.4 removes this limitation, but
there is till a valid use case. When you specify the same page from the same file more than once, gpdf will share
objects between the pages. If you are going to do further manipulation on the file and need the two instances of the
same original page to be deep copies, then you can specify the file in two different ways. For example gpdf in.pdf
--pages . 1 ./in.pdf 1 -- out.pdf would create afile with two copies of the first page of the input, and the two copies
would share any objects in common. Thisincludes fonts, images, and anything else the page references.

3.6. Overlay and Underlay Options

Starting with qpdf 8.4, it is possible to overlay or underlay pages from other files onto the output generated by gpdf.
Specify overlay or underlay asfollows:

{ --overlay | --underlay } file [options] --

Overlay and underlay options are processed late, so they can be combined with other like merging and will apply to the
final output. The --overlay and --underlay options work the same way, except underlay pages are drawn underneath
the page to which they are applied, possibly obscured by the original page, and overlay files are drawn on top of the
page to which they are applied, possibly obscuring the page. Y ou can combine overlay and underlay.

The default behavior of overlay and underlay is that pages are taken from the overlay/underlay file in sequence and
applied to corresponding pagesin the output until there are no more output pages. If the overlay or underlay file runs
out of pages, remaining output pages are left alone. This behavior can be modified by options, which are provided
between the --overlay or --underlay flag and the -- option. The following options are supported:

» --password=password: supply a password if the overlay/underlay fileis encrypted.

» --to=page-range: a range of pages in the same form at described in Section 3.5, “Page Selection
Options’, page 14 indicates which pages in the output should have the overlay/underlay applied. If not specified,
overlay/underlay are applied to all pages.

» --from=[page-range]: a range of pages that specifies which pages in the overlay/underlay file will be used for
overlay or underlay. If not specified, all pageswill be used. This can be explicitly specified to be empty if --r epeat
isused.

e --repeat=page-range: an optional range of pages that specifies which pages in the overlay/underlay file will be
repeated after the “from” pages are used up. If you want to repeat a range of pages starting at the beginning, you
can explicitly use --from=.

16

Running QPDF

Here are some examples.

» --overlay o.pdf --to=1-5 --from=1-3 --repeat=4 --: overlay the first three pages from file o.pdf onto the first three
pages of the output, then overlay page 4 from o.pdf onto pages 4 and 5 of the output. L eave remaining output pages
untouched.

» --underlay footer.pdf --from=--repeat=1,2 --: Underlay page 1 of footer.pdf on all odd output pages, and underlay
page 2 of footer.pdf on all even output pages.

3.7. Embedded Files/Attachments Options

Starting with gpdf 10.2, you can work with file attachmentsin PDF files from the command line. Thefollowing options
are available:

--list-attachments

Show the “key” and stream number for embedded files. With --verbose, additional information, including
preferred file name, description, dates, and more are aso displayed. The key is usually but not always equal to
the file name, and is needed by some of the other options.

--show-attachment=key

Write the contents of the specified attachment to standard output as binary data. The key should match one of the
keys shown by --list-attachments. If specified multiple times, only the last attachment will be shown.

--add-attachment fi | e opti ons --

Add or replace an attachment with the contents of f i | e. This may be specified more than once. The following
additional options may appear before the - - that ends this option:

--key=key
Thekey to useto register the attachment inthe embedded filestable. Defaultstothelast pathelementof f i | e.
--filename=nane

Thefile nameto be used for the attachment. Thisiswhat is usually displayed to the user and isthe name most
graphical PDF viewers will use when saving afile. It defaultsto the last path element of f i | e.

--creationdate=dat e
The attachment's creation datein PDF format; defaultsto the current time. The date format isexplained below.
--moddate=dat e

The attachment's modification date in PDF format; defaults to the current time. The date format is explained
below.

--mimetype=t ype/ subt ype

The mime type for the attachment, e.g. t ext / pl ai n or appl i cati on/ pdf . Note that the mimetype
appearsin afield called / Subt ype inthe PDF but actually includes the full type and subtype of the mime

type.
--description="t ext "

Descriptive text for the attachment, displayed by some PDF viewers.

17

Running QPDF

--replace

Indicatesthat any existing attachment with the samekey should be replaced by the new attachment. Otherwise,
gpdf gives an error if an attachment with that key is already present.

--remove-attachment=key

Remove the specified attachment. This doesn't only remove the attachment from the embedded filestable but also
clearsout thefile specification. That meansthat any potential internal linksto the attachment will be broken. This
option may be specified multiple times. Run with --ver bose to see status of the removal.

--copy-attachments-fromfi | e opti ons --

Copy attachments from another file. This may be specified more than once. The following additional options may
appear before the - - that ends this option:

--password=passwor d
If required, the password needed to openfi | e
--prefix=pr ef i x

Only required if the file from which attachments are being copied has attachments with keysthat conflict with
attachments already in the file. In this case, the specified prefix will be prepended to each key. This affects
only the key in the embedded files table, not the file name. The PDF specification doesn't preclude multiple
attachments having the same file name.

When a date is required, the date should conform to the PDF date format specification, which is
D: yyyymddhhmes<z>, where<z> iseither Z for UTC or atimezone offset intheform- hh' mm or +hh' mm .
Examples: D: 20210207161528- 05' 00' , D: 20210207211528Z.

3.8. Advanced Parsing Options

These options control aspects of how gpdf reads PDF files. Mostly these are of use to people who are working with
damaged files. Thereislittle reason to use these options unlessyou are trying to sol ve specific problems. Thefollowing
options are available:

--SUppr ess-recovery
Prevents gpdf from attempting to recover damaged files.
--ignor e-xr ef-streams
Tells gpdf to ignore any cross-reference streams.

Ordinarily, gpdf will attempt to recover from certain types of errorsin PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, gpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some dataloss is possible. The --suppress-recovery option will prevent gpdf from attempting recovery. In this case,
it will fail onthefirst error that it encounters.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, gpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid filesis to make
some content available to viewers that are not aware of cross-reference streams. It isamost never desirable to ignore
them. The only time when you might want to use thisfeatureisif you are testing creation of hybrid PDF filesand wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such afile.

18

Running QPDF

3.9. Advanced Transformation Options

These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
peoplewho arevery familiar with the PDF file format or who are PDF devel opers. The following options are available:

--compress-streams=[yn]

By default, or with --compr ess-streams=y, gpdf will compress any stream with no other filters applied to it with
the/ Fl at eDecode filter when it writes it. To suppress this behavior and preserve uncompressed streams as
uncompressed, use --compr ess-str eams=n.

--decode-level=opt i on
Controls which streams gpdf tries to decode. The default is gener alized. The following options are available:
» none: do not attempt to decode any streams

» generalized: decode streams filtered with supported generalized filters. / LZWDecode, / FI at eDecode, /
ASCI | 85Decode, and/ ASCI | HexDecode. We define generalized filters as those to be used for general-
purpose compression or encoding, as opposed to filters specifically designed for image data. Note that, by
default, streams already compressed with / Fl at eDecode are not uncompressed and recompressed unless
you also specify --recompress-flate.

» gspecialized: in addition to generalized, decode streams with supported non-lossy specialized filters; currently
thisisjust/ RunLengt hDecode

« all: in addition to generalized and specialized, decode streams with supported lossy filters; currently thisisjust
/ DCTDecode (JPEG)

--stream-data=opt i on

Controlstransformation of stream data. This option predatesthe --compr ess-str eams and --decode-level options.
Those options can be used to achieve the same affect with more control. The value of opt i on may be one of
the following:

e compress. recompress stream data when possible (default); equivalent to --compress-streams=y --decode-
level=generalized. Does not recompress streams aready compressed with / Fl at eDecode unless --
recompress-flate is also specified.

» preserve: leave al stream data asis; equivalent to --compr ess-streams=n --decode-level=none

* uncompress. uncompress stream data compressed with generalized filters when possible; equivalent to --
compress-streams=n --decode-level=gener alized

--recompress-flate

By default, streams aready compressed with / FI at eDecode are left alone rather than being uncompressed
and recompressed. This option causes gpdf to uncompress and recompress the streams. There is a significant
performance cost to using this option, but you probably want to use it if you specify --compression-level.

--compression-level=| evel

When writing new streams that are compressed with / Fl at eDecode, use the specified compression level. The
value of level should beanumber from 1to 9 andis passed directly to zlib, which implements deflate compression.
Note that gpdf doesn't uncompress and recompress streams by default. To have this option apply to already
compressed streams, you should also specify --recompress-flate. If your goal is to shrink the size of PDF files,
you should also use --obj ect-str eams=gener ate.

19

Running QPDF

--nor malize-content=[yn]

Enables or disables normalization of content streams. Content normalization is enabled by default in QDF mode.
Please see Chapter 4, QDF Mode, page 28 for additional discussion of QDF mode.

--obj ect-streams=node
Controls handling of object streams. The value of nbde may be one of the following:
* preserve: preserve origina object streams (default)
» disable: don't write any object streams
» generate: use object streams wherever possible
--preserve-unreferenced

Tells gpdf to preserve objects that are not referenced when writing the file. Ordinarily any object that is not
referenced in atraversal of the document from the trailer dictionary will be discarded. This may be useful in
working with some damaged files or inspecting files with known unreferenced objects.

Thisflag isignored for linearized files and has the effect of causing objects in the new file to be written in order
by object ID from the original file. This does not mean that object numbers will be the same since gpdf may
create stream lengths as direct or indirect differently from the original file, and the original file may have gaps
in its numbering.

See also --preser ve-unr efer enced-r esour ces, which does something completely different.
--remove-unr efer enced-r esour ces=opt i on
Theopt i on may beaut o, yes, or no. Thedefaultisaut o.

Starting with gpdf 8.1, when splitting pages, gpdf is able to attempt to remove images and fonts that are not used
by a page even if they are referenced in the page's resources dictionary. When shared resources are in use, this
behavior can gresatly reduce thefile sizes of split pages, but the analysisisvery slow. Inversionsfrom 8.1 through
9.1.1, gpdf did this analysis by default. Starting in gpdf 10.0.0, if aut o is used, gpdf does a quick analysis of
the file to determine whether the file is likely to have unreferenced objects on pages, a pattern that frequently
occurs when resource dictionaries are shared across multiple pages and rarely occurs otherwise. If it discovers
this pattern, then it will attempt to remove unreferenced resources. Usually this meansyou get the slower splitting
speed only when it's actually going to create smaller files. Y ou can suppress removal of unreferenced resources
altogether by specifying no or force it to do the full algorithm by specifying yes.

Other than cases in which you don't care about file size and care a lot about runtime, there are few reasons to
use this option, especially now that aut o mode is supported. One reason to use thisis if you suspect that gpdf
is removing resources it shouldn't be removing. If you encounter that case, please report it as bug at https:/
github.com/qpdf/qpdf/issues/.

--preserve-unr efer enced-r esour ces

Thisis asynonym for --remove-unr efer enced-r esour ces=no.

See also --preserve-unreferenced, which does something completely different.
--newline-befor e-endstream

Tellsgpdf toinsert anewline beforetheendst r eamkeyword, not counted in thelength, after any stream content
even if the last character of the stream was a newline. This may result in two newlines in some cases. Thisis

20

https://github.com/qpdf/qpdf/issues/
https://github.com/qpdf/qpdf/issues/

Running QPDF

arequirement of PDF/A. While gpdf doesn't specifically know how to generate PDF/A-compliant PDFs, this at
least prevents it from removing compliance on already compliant files.

--linearize-passl=fil e

Writethefirst pass of linearization to the named file. Theresulting fileisnot avalid PDF file. Thisoption is useful
only for debugging QPDFWriter's linearization code. When gpdf linearizesfiles, it writesthe file in two passes,
using the first pass to calculate sizes and offsets that are required for hint tables and the linearization dictionary.
Ordinarily, the first passis discarded. This option enablesit to be captured.

--coalesce-contents

When a page's contents are split across multiple streams, this option causes gpdf to combine them into a single
stream. Use of this option is never necessary for ordinary usage, but it can help when working with somefilesin
some cases. For example, this can aso be combined with QDF mode or content normalization to make it easier
tolook at al of apage's contents at once.

--flatten-annotations=opt i on

This option collapses annotations into the pages contents with special handling for form fields. Ordinarily, an
annotationisrendered separately and on top of the page. Combining annotationsinto the page's contents effectively
freezes the placement of the annotations, making them look right after various page transformations. The library
functionality backing this option was added for the benefit of programs that want to create n-up page layouts and
other similar things that don't work well with annotations. The opt i on parameter may be any of the following:

« all: include all annotations that are not marked invisible or hidden
 print: only include annotations that indicate that they should appear when the pageis printed
* screen: omit annotations that indicate they should not appear on the screen

Note that form fields are specia because the annotations that are used to render filled-in form fields may become
out of date from the fields values if the form is filled in by a program that doesn't know how to update the
appearances. If gpdf detects this case, its default behavior is not to flatten those annotations because doing so
would cause the value of the form field to be lost. This gives you a chance to go back and resave the form with a
program that knows how to generate appearances. QPDF itself can generate appearances with some limitations.
See the --gener ate-appear ances option below.

--gener ate-appear ances

If afile contains interactive form fields and indicates that the appearances are out of date with the values of the
form, this flag will regenerate appearances, subject to afew limitations. Note that thereis not usually areason to
do this, but it can be necessary before using the --flatten-annotations option. Most of these are not a problem
with well-behaved PDF files. The limitations are as follows:

* Radio button and checkbox appearances use the pre-set values in the PDF file. QPDF just makes sure that the
correct appearanceis displayed based on the value of the field. Thisisfine for PDF filesthat create their forms
properly. Some PDF writers save appearances for fields when they change, which could cause some controls
to have inconsi stent appearances.

* For text fields and list boxes, any charactersthat fall outside of US-ASCII or, if detected, “Windows ANSI” or
“Mac Roman” encoding, will be replaced by the ? character.

» Quadding isignored. Quadding is used to specify whether the contents of afield should be left, center, or right
aligned with the field.

 Rich text, multi-line, and other more elaborate formatting directives are ignored.

21

Running QPDF

e Thereisno support for multi-select fields or signature fields.
If gpdf doesn't do agood enough job with your form, use an external application to save your filled-in form before
processing it with gpdf.

--optimize-images

Thisflag causes gpdf to recompress all images that are not compressed with DCT (JPEG) using DCT compression
as long as doing so decreases the size in bytes of the image data and the image does not fall below minimum
specified dimensions. Useful information is provided when used in combination with --verbose. See aso the --
oi-min-width, --oi-min-height, and --oi-min-area options. By default, starting in gpdf 8.4, inline images are
converted to regular images and optimized aswell. Use --keep-inline-imagesto prevent inlineimages from being
included.

--0i-min-width=wi dt h

Avoid optimizing images whose width is below the specified amount. If omitted, the default is 128 pixels. Use
0 for no minimum.

--0i-min-height=hei ght

Avoid optimizing images whose height is below the specified amount. If omitted, the default is 128 pixels. Use
0 for no minimum.

--0oi-min-area=ar ea- i n- pi xel s

Avoid optimizing images whose pixel count (width x height) is below the specified amount. If omitted, the default
is 16,384 pixels. Use 0 for no minimum.

--exter nalize-inline-images

Convert inlineimagesto regular images. By default, images whose datais at least 1,024 bytes are converted when
this option is selected. Use --ii-min-bytes to change the size threshold. This option isimplicitly selected when --
optimize-imagesis selected. Use --keep-inline-images to exclude inline images from image optimization.

--ii-min-bytes=byt es

Avoid converting inline images whose size is below the specified minimum size to regular images. If omitted,
the default is 1,024 bytes. Use 0 for no minimum.

--keep-inline-images

Prevent inline images from being included in image optimization. This option has no affect when --optimize-
images is not specified.

--remove-page-labels
Remove page |abels from the output file.
--qdf

Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 28. Note
that --linearize disables QDF mode.

--min-version=ver si on

Forces the PDF version of the output file to be at least ver si on. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the

22

Running QPDF

input file's original version will be used. It is seldom necessary to use this option since gpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form naj or . mi nor . ext ensi on-1 evel , in which case the
versionisinterpreted asmaj or . m nor at extension level ext ensi on- | evel . For example, version1. 7. 8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

--force-version=ver si on

This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause gpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AESencryptionisdisabledif the versionislessthan 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if lessthan 1.4, and all encryption is disabled if lessthan 1.3. Even
with these precautions, gpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As agenerd rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to alower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that gpdf understands and is not already compressed
using agood compression scheme, gpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generaly results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --nor malize-content=y is specified, gpdf will attempt to normalize whitespace and newlines in page content
streams. Thisis generally safe but could, in some cases, cause damage to the content streams. This option isintended
for people who wish to study PDF content streams or to debug PDF content. Y ou should not use this for “ production”
PDFfiles.

When normalizing content, if gpdf runsinto any lexical errors, it will print awarning indicating that content may be
damaged. The only situation in which gpdf is known to cause damage during content normalization is when a page's
contents are split across multiple streams and streams are split in the middle of alexical token such as a string, name,
or inline image. Note that files that do this are invalid since the PDF specification states that content streams are not
to be split in the middle of atoken. If you want to inspect the original content streamsin an uncompressed format, you
can always run with --qdf --nor malize-content=n for a QDF file without content normalization, or alternatively --
stream-data=uncompr essfor aregular non-QDF mode file with uncompressed streams. These will both uncompress
all the streams but will not attempt to normalize content. Please note that if you are using content normalization or
QDF mode for the purpose of manually inspecting files, you don't have to care about this.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. gpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and gener ate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In gener ate mode, gpdf will create its own object streams. Thiswill usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

23

Running QPDF

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can till be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengthsare stored asindirect objects, objectsarelaid out in aless efficient but morereadabl e fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF filesin a
text editor. For details, please see Chapter 4, QDF Mode, page 28.

3.10. Testing, Inspection, and Debugging
Options

These options can be useful for digging into PDF files or for usein automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--deter ministic-id

Causes generation of a deterministic value for /ID. This prevents use of timestamp and output file name
information in the /ID generation. Instead, at some dight additional runtime cost, the /ID field is generated to
include adigest of the significant parts of the content of the output PDFfile. Thismeansthat agiven gpdf operation
should generate the same /1D each time it is run, which can be useful when caching results or for generation of
some test data. Use of thisflag is not compatible with creation of encrypted files.

--static-id

Causes generation of afixed value for /ID. Thisisintended for testing only. Never use it for production files. If
you are trying to get the same /ID each time for a given file and you are not generating encrypted files, consider
using the --deter ministic-id option.

--static-aes-iv

Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never useit for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids

Suppresses inclusion of original object ID commentsin QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

--show-encryption
Shows document encryption parameters. Also showsthe document'suser password if the owner passwordisgiven.
--show-encryption-key

When encryption information is being displayed, as when --check or --show-encryption is given, display the
computed or retrieved encryption key as a hexadecimal string. This value is not ordinarily useful to users, but it
can be used as the argument to --password if the --passwor d-is-hex-key is specified. Note that, when PDF files
are encrypted, passwords and other metadata are used only to compute an encryption key, and the encryption key
iswhat is actually used for encryption. This enables retrieval of that key.

--check-linearization

Checksfile integrity and linearization status.

24

Running QPDF

--show-linearization
Checks and displays al datain the linearization hint tables.
--show-xr ef

Shows the contents of the cross-reference table in a human-readable form. Thisis especially useful for fileswith
cross-reference streams which are stored in a binary format.

--show-obj ect=trailer [obj[,gen]

Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “ compressed objects’).

--raw-stream-data

When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

--filtered-stream-data

When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream isfiltered using filters that qpdf does not support, an error will be issued.

--show-npages

Prints the number of pages in the input file on aline by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pagesin afile.

--show-pages

Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images

When used along with --show-pages, also shows the object and generation numbersfor the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in acomment in the source code.)

--json

Generate a JSON representation of thefile. Thisis described in depth in Chapter 6, QPDF JSON, page 32
--json-help

Describe the format of the JSON output.
--json-key=key

This option is repeatable. If specified, only top-level keys specified will be included in the JSON output. If not
specified, all keyswill be shown.

--j son-obj ect=trailer [obj [,gen]

This option is repeatable. If specified, only specified objects will be shown in the “obj ect s” key of the JSON
output. If absent, all objectswill be shown.

25

Running QPDF

--check

Checksfile structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reportsno errors may still have errorsin stream data content but should otherwise be structurally sound. If --check
any errors, gpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If gpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4). When --check is combined with other options, checks are always performed before any
other options are processed. For erroneous files, --check will cause qpdf to attempt to recover, after which other
options are effectively operating on the recovered file. Combining --check with other optionsin thisway can be
useful for manually recovering severely damaged files.

The --raw-str eam-data and --filter ed-str eam-data options are ignored unless --show-obj ect is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filter ed-stream-data is given and --nor malize-content=y isa so given, gpdf will attempt to normalize the stream
data asif it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

3.11. Unicode Passwords

At the library API level, all methods that perform encryption and decryption interpret passwords as strings of bytes.
It is up to the caller to ensure that they are appropriately encoded. Starting with gpdf version 8.4.0, gpdf will attempt
to make this easier for you when interact with gpdf via its command line interface. The PDF specification requires
passwords used to encrypt fileswith 40-bit or 128-bit encryption to be encoded with PDF Doc encoding. Thisencoding
is a single-byte encoding that supports |SO-Latin-1 and a handful of other commonly used characters. It has alarge
overlap with Windows ANSI but is not exactly the same. There is generally not away to provide PDF Doc encoded
strings on the command line. As such, gpdf versions prior to 8.4.0 would often create PDF files that couldn't be
opened with other software when given a password with non-ASCII characters to encrypt afile with 40-bit or 128-
bit encryption. Starting with gpdf 8.4.0, gpdf recognizes the encoding of the parameter and transcodes it as needed.
The rest of this section provides the details about exactly how gpdf behaves. Most users will not need to know this
information, but it might be useful if you have been working around gpdf's old behavior or if you are using gpdf to
generate encrypted files for testing other PDF software.

A note about Windows: when gpdf builds, it attempts to determine what it has to do to use wmain instead of main on
Windows. The wmain function is an aternative entry point that receives all arguments as UTF-16-encoded strings.
When gpdf starts up this way, it converts al the strings to UTF-8 encoding and then invokes the regular main. This
meansthat, as far as qpdf is concerned, it receivesits command-line arguments with UTF-8 encoding, just asit would
in any modern Linux or UNIX environment.

If afileis being encrypted with 40-bit or 128-hit encryption and the supplied password is not a valid UTF-8 string,
gpdf will fall back to the behavior of interpreting the password as astring of bytes. If you have old scripts that encrypt
files by passing the output of iconv to gpdf, you no longer need to do that, but if you do, gpdf should still work. The
only exception would be for the extremely unlikely case of a password that is encoded with a single-byte encoding but
also happens to be valid UTF-8. Such a password would contain strings of even numbers of characters that alternate
between accented letters and symbols. In the extremely unlikely event that you are intentionally using such passwords
and gpdf is thwarting you by interpreting them as UTF-8, you can use --passwor d-mode=bytes to suppress qpdf's
automatic behavior.

The --passwor d-mode option, as described earlier in this chapter, can be used to change gpdf's interpretation of
supplied passwords. There are very few reasons to use this option. One would be the unlikely case described in the
previous paragraph in which the supplied password happens to be valid UTF-8 but isn't supposed to be UTF-8. Y our
best bet would bejust to providethe password asavalid UTF-8 string, but you could al so use --passwor d-mode=bytes.
Another reason to use --passwor d-mode=byteswould beto intentionally generate PDF files encrypted with passwords

26

Running QPDF

that are not properly encoded. The qgpdf test suite does this to generate invalid files for the purpose of testing its
password recovery capability. If you weretrying to createintentionally incorrect filesfor asimilar purposes, the bytes
password mode can enable you to do this.

When gpdf attempts to decrypt a file with a password that contains non-ASCI| characters, it will generate a list of
alternative passwords by attempting to interpret the password as each of ahandful of different coding systemsand then
transcode them to the required format. This helps to compensate for the supplied password being given in the wrong
coding system, such as would happen if you used the iconv workaround that was previously needed. It also generates
passwords by doing the reverse operation: tranglating from correct in incorrect encoding of the password. This would
enable gpdf to decrypt files using passwords that were improperly encoded by whatever software encrypted the files,
including older versions of gpdf invoked without properly encoded passwords. The combination of these two recovery
methods should make gpdf transparently open most encrypted files with the password supplied correctly but in the
wrong coding system. There are no real downsides to this behavior, but if you don't want gpdf to do this, you can
use the --suppr ess-passwor d-r ecovery option. One reason to do that is to ensure that you know the exact password
that was used to encrypt the file.

With these changes, gpdf now generates compliant passwords in most cases. There are still some exceptions. In
particular, the PDF specification directs compliant writers to normalize Unicode passwords and to perform certain
transformations on passwords with bidirectional text. Implementing this functionality requires using a real Unicode
library like ICU. If a client application that uses gpdf wants to do this, the gpdf library will accept the resulting
passwords, but gpdf will not perform these transformations itself. It is possible that this will be addressed in a future
version of gpdf. The QPDFWriter methods that enable encryption on the output file accept passwords as strings of
bytes.

Please note that the --passwor d-is-hex-key option is unrelated to al this. This flag bypasses the normal process of
going from password to encryption string entirely, allowing the raw encryption key to be specified directly. Thisis
useful for forensic purposes or for brute-force recovery of files with unknown passwords.

27

Chapter 4. QDF Mode

In QDF mode, qpdf creates PDF filesin what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %DF- 1. O asits third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off editsto PDF files (though there are other reasons why this may not alwayswork). Note that QDF mode
does not support linearized files. If you enable linearization, QDF mode is automatically disabled.

It is ordinarily very difficult to edit PDF files in atext editor for two reasons: most meaningful datain PDF filesis
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
fileisorganized in amanner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
gpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
apossibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:
 All objects appear in numerical order in the PDF file, including when objects appear in object streams.
» Objectsare printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

e Unless specifically overridden, streams appear uncompressed (when gpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

» All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

« If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objectsin object streams.

 All beginningsof objects, st r eamtokens, endst r eamtokens, and endobj tokensappear on linesby themselves.
A blank line follows every endobj token.

* If thereisacross-reference stream, it is unfiltered.
 Page dictionaries and page content streams are marked with special comments that make them easy to find.
» Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsegquent objects are renumbered. If a QDF file
has object streamsin it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

Itisnot generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run gpdf on the file (after running fix-qdf), and gpdf will omit the now-orphaned
object.

When fix-qdf isrun, it goes through the file and recomputes the following parts of thefile:

e the/ N,/ Wand/ Fi r st keysof all object stream dictionaries

28

QDF Mode

the pairs of numbers representing object numbers and offsets of objects in object streams
al stream lengths
the cross-reference table or cross-reference stream

the offset to the cross-reference table or cross-reference stream following the st ar t xr ef token

29

Chapter 5. Using the QPDF Library
5.1. Using QPDF from C++

The source tree for the gpdf package has an examples directory that contains a few example programs. The qpdf/
gpdf.cc source file also serves as a useful example since it exercises almost all of the gpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QPDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/gpdf directory. It is recommend that you use #i ncl ude <qpdf/
QPDF. hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -1 z -1 j peg on your link command. If
your system understands how to read libtool .1a files, this may not be necessary.

The gpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFOhj ect Handl e, or QPDFW i t er) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

5.2. Using QPDF from other languages

The gpdf library isimplemented in C++, which makesit hard to use directly in other languages. There are afew things
that can help.

“ Cn

The gpdf library includes a“C” language interface that provides a subset of the overall capabilities. The header
file gpdf/gpdf-c.h includes information about its use. Aslong as you use a C++ linker, you can link C programs
with gpdf and use the C API. For languages that can directly load methods from a shared library, the C API can
also be useful. People have reported success using the C API from other languages on Windows by directly calling
functionsinthe DLL.

Python

A Python module called pikepdf [https://pypi.org/project/pikepdf/] provides a clean and highly functional set of
Python bindings to the gpdf library. Using pikepdf, you can work with PDF filesin a natural way and combine
gpdf's capabilities with other functionality provided by Python'srich standard library and available modules.

Other Languages

Starting with version 8.3.0, the gpdf command-line tool can produce a JSON representation of the PDF file's
non-content data. This can facilitate interacting programmatically with PDF files through qpdf's command line
interface. For more information, please see Chapter 6, QPDF JSON, page 32.

5.3. A Note About Unicode File Names

When strings are passed to gpdf library routineseither aschar * orasst d: : st ri ng, they aretreated asbyte arrays
except where otherwise noted. When Unicode is desired, gpdf wants UTF-8 unless otherwise noted in commentsin
header files. In modern UNIX/Linux environments, this generally does the right thing. In Windows, it's a bit more
complicated. Starting in gpdf 8.4.0, passwords that contain Unicode characters are handled much better, and starting
in qpdf 8.4.1, the library attempts to properly handle Unicode charactersin filenames. In particular, in Windows, if a
UTF-8 encoded string isused as afilenamein either QPDF or QPDFWriter, itisinternally convertedtowchar _t *,

30

https://pypi.org/project/pikepdf/
https://pypi.org/project/pikepdf/

Using the QPDF Library

and Unicode-aware Windows APIs are used. As such, gpdf will generally operate properly on files with non-ASCl|
charactersin their names as long as the filenames are UTF-8 encoded for passing into the gpdf library API, but there
are still some rough edges, such as the encoding of the filenames in error messages our CLI output messages. Patches
or bug reports are welcome for any continuing issues with Unicode file names in Windows.

31

Chapter 6. QPDF JSON

6.1. Overview

Beginning with gpdf version 8.3.0, the qpdf command-line program can produce a JSSON representation of the non-
content data in a PDF file. It includes a dump in JSON format of al objects in the PDF file excluding the content
of streams. This JSON representation makes it very easy to look in detail at the structure of a given PDF file, and it
also provides a great way to work with PDF files programmatically from the command-line in languages that can't
cal or link with the gpdf library directly. Note that stream data can be extracted from PDF files using other qpdf
command-line options.

6.2. JSON Guarantees

The gpdf JSON representation includes a JSON serialization of the raw objects in the PDF file as well as some
computed information in a more easily extracted format. QPDF provides some guarantees about its JISON format.
These guarantees are designed to simplify the experience of a developer working with the JISON format.

Compatibility

Thetop-level JISON object output isadictionary. The JSON output contains various nested dictionariesand arrays.
With the exception of dictionaries that are populated by the fields of objects from the file, al instances of a
dictionary are guaranteed to have exactly the same keys. Future versions of qpdf are free to add additional keys
but not to remove keys or change the type of object that akey pointsto. The gpdf program validatesthis guarantee,
and in the unlikely event that a bug in gpdf should cause it to generate data that doesn't conform to thisrule, it
will ask you to file a bug report.

The top-level JSON structure contains a “ver si on” key whose value is simple integer. The value of the
ver si on key will beincremented if a non-compatible changeis made. A non-compatible change would be any
change that involves removal of akey, a change to the format of data pointed to by a key, or a semantic change
that requires a different interpretation of apreviously existing key. A strong effort will be made to avoid breaking
compatibility.

Documentation

The gpdf command can be invoked with the --json-help option. This will output a JSON structure that has the
same structure as the JSON output that gpdf generates, except that each field in the help output is a description of
the corresponding field in the JSON output. The specific guarantees are as follows:

» A dictionary in the help output means that the corresponding location in the actual JSON output is also a
dictionary with exactly the same keys; that is, no keys present in help are absent in the real output, and no keys
will be present in the real output that are not in help. Asaspecia case, if the dictionary has a single key whose
name starts with < and ends with >, it means that the JSON output is a dictionary that can have any keys, each
of which conforms to the value of the special key. Thisis used for cases in which the keys of the dictionary
are things like object 1Ds.

» A dtring in the help output is a description of the item that appears in the corresponding location of the actual
output. The corresponding output can have any format.

« Anarray inthe help output always contains a single el ement. It indicates that the corresponding location in the
actual output is also an array, and that each element of the array has whatever format is implied by the single
element of the help output's array.

32

QPDF JSON

For example, the help output indicates includes a“pagel abel s” key whose value is an array of one element.
That element is a dictionary with keys “i ndex” and “I abel ”. In addition to describing the meaning of those
keys, thistells you that the actual JSON output will contain apagel abel s array, each of whose elementsisa
dictionary that containsani ndex key, al abel key, and no other keys.

Directness and Simplicity

The JSON output contains the value of every object in the file, but it also contains some processed data. This
is analogous to how gpdf's library interface works. The processed data is similar to the helper functions in that
it allows you to look at certain aspects of the PDF file without having to understand all the nuances of the PDF
specification, while the raw objects allow you to mine the PDF for anything that the higher-level interfaces are
lacking.

6.3. Limitations of JSON Representation

There are afew limitations to be aware of with the JSSON structure:

Strings, names, and indirect object references in the original PDF file are all converted to strings in the JSON
representation. In the case of a“normal” PDF file, you can tell the difference because aname startswith aslash (/),
and an indirect object referencelooksliken n R, but if there wereto be astring that looked like aname or indirect
object reference, there would be no way to tell this from the JSON output. Note that there are certain cases where
you know for sure what something is, such as knowing that dictionary keys in objects are always names and that
certain thingsin the higher-level computed data are known to contain indirect object references.

The JSON format doesn't support binary data very well. Mostly the details are not important, but they are presented
here for information. When gpdf outputs a string in the JSON representation, it converts the string to UTF-8,
assuming usual PDF string semantics. Specifically, if the origina string is UTF-186, it is converted to UTF-8.
Otherwise, it is assumed to have PDF doc encoding, and is converted to UTF-8 with that assumption. This causes
strange things to happen to binary strings. For example, if you had the binary string <038051>, this would be
output to the JISON as\ u0003« Qbecause 03 is not a printable character and 80 isthe bullet character in PDF doc
encoding and is mapped to the Unicode value 2022. Since 51 isQ, it isoutput asis. If you wanted to convert back
from here to a binary string, would have to recognize Unicode values whose code points are higher than Ox FF and
map those back to their corresponding PDF doc encoding characters. There isno way to tell the difference between
aUnicode string that was originally encoded as UTF-16 or one that was converted from PDF doc encoding. In other
words, it's best if you don't try to use the JSON format to extract binary strings from the PDF file, but if you really
had to, it could be done. Note that qpdf's --show-object option does not have this limitation and will reveal the
string as encoded in the origina file.

6.4. JISON: Special Considerations

For the most part, the built-in JSON help tells you everything you need to know about the JSON format, but there are
afew non-obvious things to be aware of:

» While gpdf guarantees that keys present in the help will be present in the output, those fields may be null or empty

if theinformation is not known or absent inthefile. Also, if you specify --json-keys, the keysthat are not listed will
be excluded entirely except for those that --json-help says are always present.

» In afew places, there are keys with names containing pageposf r onil. The values of these keys are null or an

integer. If an integer, they point to a page index within the file numbering from 1. Note that JSON indexes from O,
and you would also use 0-based indexing using the API. However, 1-based indexing is easier in this case because
the command-line syntax for specifying page ranges is 1-based. If you were going to write a program that looked
through the JSON for information about specific pages and then use the command-line to extract those pages, 1-
based indexing is easier. Besides, it's more convenient to subtract 1 from aprogram in area programming language
thanitisto add 1 from shell code.

33

QPDF JSON

» Theimage information included in the page section of the JSON output includesthe key “fi | t er abl e”. Note
that the value of this field may depend on the --decode-level that you invoke gpdf with. The JSON output includes
atop-level key “par anet er s” that indicates the decode level used for computing whether a stream wasfilterable.
For example, jpeg images will be shown as not filterable by default, but they will be shown as filterable if you run
gpdf --json --decode-level=all.

Chapter 7. Design and Library Notes

7.1. Introduction

This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
aroad map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. Thislibrary attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call set Suppr essWar ni ngs(true) . If youwant to fail on the first error, you can call
set At t enpt Recover y(f al se) . Thedefault behavior isto generating warnings for recoverable problems. Note
that recovery will not always produce the desired resultseven if it isableto get through thefile. Unlike most other PDF
filesthat produce generic warnings such as“ Thisfileisdamaged,”, qpdf generally issues adetailed error message that
would be most useful to a PDF developer. Thisis by design as there seems to be a shortage of PDF validation tools
out there. Thiswas, in fact, one of the major motivations behind the initial creation of gpdf.

7.2. Design Goals

The QPDF package includes support for reading and rewriting PDF files. It aimsto hide from the user detailsinvolving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the gpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such asfile positions.

A user of thelibrary never hasto care whether an object isdirect or indirect, though it is possible to determine whether
an object isdirect or not if thisinformation is needed. All access to objects deals with this transparently. All memory
management details are al'so handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to C++-11'sstd::shared_ptr object, but predating it by several years. This
library also makes use of atechnique for giving fine-grained access to methods in one class to other classes by using
public subclasses with friends and only private members that in turn call private methods of the containing class. See
QPDFObjectHandle::Factory asan example.

The top-level gpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

The primary class for interacting with PDF objects is QPDFObjectHandle. Instances of this class can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle created
by reading from a file will always contain a reference back to the QPDF object from which they were created. A
QPDFObjectHandle may bedirect or indirect. If indirect, the QPDFObject the PointerHolder initialy pointsto
isanull pointer. Inthis case, the first attempt to access the underlying QPDFObject will result in the QPDFObject
being resolved viaacall to the referenced QPDF instance. Thismakes it essentially impossible to make coding errors
in which certain things will work for some PDF files and not for others based on which objects are direct and which
objects are indirect.

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method

35

Design and Library Notes

QPDFObjectHandle: : parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can aso be modified in several ways. See comments in QPDFObjectHandle.hh for details.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF:: processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output fileswritten by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validatesthe PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only thefirst trailer dictionary
though it does read all of them so it can check the / Pr ev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning avector
of all page objects. For full details, please see the header files QPDF.hh and QPDFObjectHandle.hh. There are also
some additional helper classes that provide higher level API functions for certain document constructions. These are
discussed in Section 7.3, “Helper Classes’, page 36.

7.3. Helper Classes

QPDF version 8.1 introduced the concept of hel per classes. Hel per classes areintended to contain higher level APIsthat
allow devel opersto work with certain document constructs at an abstraction level abovethat of QPDFObjectHandle
while staying true to gpdf's philosophy of not hiding document structure from the devel oper. Aswith gpdf in general,
the goal istake away some of the more tedious bookkeeping aspects of working with PDF files, not to remove the need
for the developer to understand how the PDF construction in question works. The driving factor behind the creation
of helper classes was to allow the evolution of higher level interfaces in gpdf without polluting the interfaces of the
main top-level classes QPDF and QPDFObjectHandle.

There are two kinds of helper classes: document helpers and object helpers. Document helpers are constructed with a
reference to a QPDF object and provide methods for working with structures that are at the document level. Object
helpers are constructed with an instance of a QPDFObjectHandle and provide methods for working with specific
types of objects.

Examples of document helpers include QPDFPageDocumentHelper, which contains methods for operating on
the document's page trees, such as enumerating al pages of a document and adding and removing pages; and
QPDFAcroFormDocumentHelper, which contains document-level methods related to interactive forms, such as
enumerating form fields and creating mappings between form fields and annotations.

Examples of object helpers include QPDFPageObjectHelper for performing operations on pages such as page
rotation and some operations on content streams, QPDFFormFieldObjectHelper for performing operations related
to interactive form fields, and QPDFAnnotationObjectHelper for working with annotations.

It is always possible to retrieve the underlying QPDF reference from a document helper and the underlying
QPDFObjectHandle reference from an object hel per. Hel pers are designed to be hel pers, not wrappers. Theintention
isthat, ingeneral, itissafeto freely intermix operationsthat use hel perswith operations that use the underlying objects.
Document and object helpers do not attempt to provide a complete interface for working with the things they are

Las pointed out earlier, the intention is not for gpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and gpdf offers may transformations that can do this as well, there seemsto be little point in the
added complexity of conditionally enforcing document security.

36

Design and Library Notes

helping with, nor do they attempt to encapsulate underlying structures. They just provide afew methods to help with
error-prone, repetitive, or complex tasks. In some cases, ahelper object may cache some information that is expensive
to gather. In such cases, the helper classes are implemented so that their own methods keep the cache consistent, and
the header file will provide amethod to invalidate the cache and a description of what kinds of operations would make
the cache invalid. If in doubt, you can always discard a helper class and create a new one with the same underlying
objects, which will ensure that you have discarded any stale information.

By Convention, document helpers are caled QPDFSomethingDocumentHelper and are derived from
QPDFDocumentHelper, and object helpers are called QPDFSomethingObjectHelper and are derived from
QPDFObjectHelper. For details on specific helpers, please see their header files. Y ou can find them by looking at
include/gpdf/QPDF* DocumentHel per.hh and include/qpdf/QPDF* ObjectHel per.hh.

In order to avoid creation of circular dependencies, the following general guidelines are followed with helper classes:

* Coreclassinterfacesdo not know about hel per classes. For example, no methodsof QPDF or QPDFObjectHandle
will include helper classesin their interfaces.

* Interfaces of object helperswill usually not use document helpersin their interfaces. Thisisbecauseit ismuch more
useful for document helpers to have methods that return object helpers. Most operations in PDF files start at the
document level and go from there to the object level rather than the other way around. It can sometimes be useful
to map back from object-level structuresto document-level structures. If thereisadesireto do this, it will generally
be provided by a method in the document helper class.

* Most of the time, object helpers don't know about other object helpers. However, in some cases, one type of
object may be a container for another type of object, in which case it may make sense for the outer object
to know about the inner object. For example, there are methods in the QPDFPageObjectHelper that know
QPDFAnNnnotationObjectHelper because references to annotations are contained in page dictionaries.

» Any helper or corelibrary class may use helpersin their implementations.

Prior to gpdf version 8.1, higher level interfaces were added as “convenience functions’ in either QPDF or
QPDFObjectHandle. For compatihility, older convenience functions for operating with pages will remain in those
classes even as dternatives are provided in hel per classes. Going forward, new higher level interfaces will be provided
using helper classes.

7.4. Implementation Notes

This section contains afew notes about QPDF's internal implementation, particularly around what it doeswhen it first
processes afile. This section is a bit of asimplification of what it actually does, but it could serve as a starting point
to someone trying to understand the implementation. There is nothing in this section that you need to know to use
the gpdf library.

QPDFObject isthe basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current file
position. If the token isanot either adictionary or array opener, an object isimmediately constructed from the single
token and the parser returns. Otherwise, the parser iterates in a special mode in which it accumulates objects until it
finds a balancing closer. During this process, the “R’ keyword is recognized and an indirect QPDFObjectHandle
may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it readsthe
object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle

37

Design and Library Notes

then replacesitsPointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. Inthis
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they aredirect or indirect objects. Additionally, no object isever read from thefile more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the gpdf package to take advantage of thisimportant design goal of PDF files.

If the requested object isinside of an object stream, the object stream itself isfirst read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objectsin the stream are cached.

The following example should clarify how QPDF processes asimplefile.
* Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

* The QPDF class checks the beginning of a.pdf for a PDF header. It then reads the cross reference table mentioned
at the end of the file, ensuring that it is looking before the last 984&OF. After gettingto t r ai | er keyword, it
invokes the parser.

e Theparser sees“<<”, so0it callsitself recursively in dictionary creation mode.

 In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>". Each object that is
read is pushed onto a stack. If “R’ is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>" is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

» Theresulting dictionary is saved asthe trailer dictionary.

* The/ Pr ev key issearched. If present, QPDF seeksto that point and repeats except that the new trailer dictionary
isnot saved. If / Pr ev isnot present, theinitial parsing processis complete.

If thereis an encryption dictionary, the document's encryption parameters are initialized.

* The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returnsiit. It
isan unresolved indirect QPDFObjectHandle.

* The client requests the / Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
isindirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it avalid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

Asthe client continues to request objects, the same processis followed for each new requested object.

7.5. Casting Policy

This section describes the casting policy followed by gpdf's implementation. This is no concern to gpdf's end users
and largely of no concern to people writing code that uses gpdf, but it could be of interest to people who are porting
gpdf to a new platform or who are making modifications to the code.

The C++ code in gpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast isin a macro
provided by athird-party header file). When thereisaneed for acast, it ishandled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some

38

Design and Library Notes

combination of the above. As alast resort, a compiler-specific #pr agnma may be used to suppress awarning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The QIntC namespace, provided by include/gpdf/QIntC.hh, implements safe functions for converting between
integer types. These functions do range checking and throw a std::range_error, which is subclass of
std::runtine_error, if conversion from one integer type to another results in loss of information. There are
many cases in which we have to move between different integer types because of incompatible integer types used in
interoperabl e interfaces. Some are unavoidable, such as moving between sizes and offsets, and others are there because
of old code that is too in entrenched to be fixable without breaking source compatibility and causing pain for users.
QPDF is compiled with extra warnings to detect conversions with potential data loss, and all such cases should be
fixed by either using afunction from QIntC or astatic_cast.

When the intention is just to switch the type because of exchanging data between incompatible interfaces, use
QIntC. This is the usual case. However, there are some cases in which we are explicitly intending to use the
exact same bit pattern with a different type. This is most common when switching between signed and unsigned
characters. A lot of gpdf's code uses unsigned charactersinternally, but st d: : st ri ng and char aresigned. Using
QIntC::to_char would be wrong for converting from unsigned to signed characters because a negative char value
and the corresponding unsi gned char value greater than 127 mean the same thing. There are also casesin which
we use static_cast when working with bit fields where we are not representing a numerical value but rather a bunch
of bits packed together in some integer type. Also note that si ze_t and | ong both typically differ between 32-bit
and 64-bit environments, so sometimes an explicit cast may not be needed to avoid warnings on one platform but
may be needed on another. A conversion with QIntC should always be used when the types are different even if the
underlying size isthe same. QPDF's Cl build builds on 32-bit and 64-bit platforms, and the test suite is very thorough,
so it is hard to make any of the potential errors here without being caught in build or test.

Non-const unsi gned char * isused inthe Pi pel i ne interface. The pipeline interface has awrite call that uses
unsi gned char* without aconst qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const intheir interfaces. Unfortunately, there are many placesin
the code where it is desirable to have const char * with pipelines. None of the pipeline implementations in gpdf
currently modify the data passed to write, and doing so would be counter to the intent of Pi pel i ne, but thereis
nothing in the code to prevent this from being done. There are places in the code where const_cast is used to remove
the const-ness of pointers going into Pi pel i nes. This could theoretically be unsafe, but there is adequate testing to
assert that it is safe and will remain safe in gpdf's code.

7.6. Encryption

Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object isread from afile, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. Thisway, nothing in the library ever has to know or care whether it is reading an encrypted file.

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, gpdf will preserve any encryption in force in the original
file. gpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 hit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, gpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. gpdf also requires the password to be specified in order to open the file, not just to extract

39

Design and Library Notes

attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, gpdf will apply the file's encryption to everything in thefile, not just to the attachments. When
decrypting the file, gpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it isthat way in the original file.

One point of confusion some people have about encrypted PDF files is that encryption is not the same as password
protection. Password protected files are always encrypted, but it is also possible to create encrypted files that do not
have passwords. Internally, such files use the empty string as a password, and most readers try the empty string first
to seeif it works and prompt for a password only if the empty string doesn't work. Normally such files have an empty
user password and a non-empty owner password. In that way, if the file is opened by an ordinary reader without
specification of password, the restrictions specified in the encryption dictionary can be enforced. Most users wouldn't
even realize such afile was encrypted. Since gpdf always ignores the restrictions (except for the purpose of reporting
what they are), gpdf doesn't care which password you use. QPDF will allow you to create PDF files with non-empty
user passwords and empty owner passwords. Some readers will require a password when you open these files, and
others will open the files without a password and not enforce restrictions. Having a non-empty user password and an
empty owner password doesn't really make sense because it would mean that opening the file with the user password
would be morerestrictive than not supplying apassword at all. QPDF also allowsyou to create PDF fileswith the same
password as both the user and owner password. Some readers will not ever alow such files to be accessed without
restrictions because they never try the password as the owner password if it works as the user password. Nonethel ess,
one of the powerful aspects of gpdf is that it alows you to finely specify the way encrypted files are created, even
if the results are not useful to some readers. One use case for this would be for testing a PDF reader to ensure that it
handles odd configurations of input files.

7.7. Random Number Generation

QPDF generates random numbers to support generation of encrypted data. Starting in qpdf 10.0.0, gpdf usesthe crypto
provider as its source of random numbers. Older versions used the OS-provided source of secure random numbers
or, if alowed at build time, insecure random numbers from stdlib. Starting with version 5.1.0, you can disable use
of OS-provided secure random numbers at build time. This is especially useful on Windows if you want to avoid a
dependency on Microsoft's cryptography API. You can also supply your own random data provider. For details on
how to do this, please refer to the top-level README.md file in the source distribution and to commentsin QUTtil.hh.

7.8. Adding and Removing Pages

While gpdf's APl has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues. pushing
inheritable resourcesfrom the/ Pages tree down to individual pages and manipulation of the/ Pages treeitself. For
details, see addPage and surrounding methods in QPDF.hh.

7.9. Reserving Object Numbers

Version 3.0 of gpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are casesin which you may want to add a series of indirect objectswith referencesto each other to aQPDF object.
This causes a problem because you can't determine the object 1D that anew indirect object will have until you add it to
the QPDF object with QPDF:: makel ndirectObject. The only way to add two mutually referential objectsto a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possibleto create areserved object using QPDFObjectHandle: : newReserved. Thisisan indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF

40

Design and Library Notes

files, as discussed in Section 7.10, “Copying Objects From Other PDF Files’, page 41. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in gpdf's sources.

7.10. Copying Objects From Other PDF Files

Version 3.0 of gpdf introduced the ability to copy objectsinto a QPDF object from a different QPDF object, which
werefer to asforeign objects. Thisallows arbitrary merging of PDF files. The “from” QPDF object must remain valid
after the copy as discussed in the note below. The gpdf command-line tool provides limited support for basic page
selection, including merging in pages from other files, but the library's APl makesit possible to implement arbitrarily
complex merging operations. The main method for copying foreign objects is QPDF:: copyForeignObject. This takes
an indirect object from another QPDF and copies it recursively into this object while preserving all object structure,
including circul ar references. Thismeansyou can add adirect object that you create from scratchto aQPDF aobject with
QPDF::makelndirectObject, and you can add an indirect object from another file with QPDF::copyForeignObject.
Thefact that QPDF:: makel ndirectObject does not automatically detect aforeign object and copy itisan explicit design
decision. Copying aforeign object seems like a sufficiently significant thing to do that it should be done explicitly.

The other way to copy foreign objectsis by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF:: makel ndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

Please note: when you copy objects from one QPDF to another, the source QPDF object must remain valid until you

have finished with the destination object. This is because the original object is still used to retrieve any referenced
stream data from the copied object.

7.11. Writing PDF Files

The gpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The
QPDFWriter class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 8,
Linearization, page 43 for a description of linearization is implemented. This section describes how we write non-
linearized files including the creation of QDF files (see Chapter 4, QDF Mode, page 28.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the codein QPDFWriter for exact details.

* Initialize state:
¢ next object number =1
 object queue = empty
< renumber table: old object id/generation to new id/0 = empty
» xref table: new id -> offset = empty
» Create a QPDF object from afile.
» Write header for new PDFfile.
» Request the trailer dictionary.

 For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

» While there are more objects on the queue:

41

Design and Library Notes

e Pop queue.

* Look up object's new number nin the renumbering table.

« Store current offset into xref table.

* Writen 0 obj.

« If objectisnull, whether direct or indirect, write out null, thus eliminating unresolvabl e indirect object references.

« If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

« |If object is not astream, array, or dictionary, write out its contents.

« If object isan array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object isfound, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. Asaspecial case, when writing out a stream dictionary, replacelength,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

« Iftheobjectisastream, writest r eam n, the stream contents (from the memory buffer), and\ nendst r ean n.
« When done, write endobj .

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and 9Y9&CF.

7.12. Filtered Streams

Support for streams isimplemented through the Pipeline interface which was designed for this package.

When reading streams, create aseriesof Pipeline objects. The Pipeline abstract base requiresimplementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading afiltered stream, the QPDF class createsa Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
isrequired. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

42

Chapter 8. Linearization

This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

8.1. Basic Strategy for Linearization

To avoid theincestuous problem of having the gpdf library validateitsown linearized files, we have aspecial linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

8.2. Preparing For Linearization

Before creating alinearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the / Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 8.3, “Optimization”, page 43. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is aterm from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only afew issues that need to be dealt
with:

* Creation of hintstables
 Placing objects in the correct order

* Filling in offsets and byte sizes

8.3. Optimization

In order to perform various operations such aslinearization and splitting filesinto pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is aso necessary to
ensurethat all page-level attributes appear directly at the pagelevel and are not inherited from parentsin the pagestree.

Werefer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although thisoptimization wasinitially motivated by the need to createlinearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variablesobj_user to_objectsand object_to _obj usersin
QPDF have been populated. Any object that has more than one value in the object_to_obj userstableis shared. Any
object that has exactly onevalueinthe object_to_obj userstableis private. To find al the private objectsin a page or
atrailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

43

Linearization

8.4. Writing Linearized Files

Wewill createfileswith only primary hint streams. Wewill never write overflow hint streams. (Asof PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
thisreliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipelineis a count pipeline chained to a discard pipeline. The count pipeline simply passes
itsdatathrough to the next pipeline in the chain but can return the number of bytes passed throughiit at any intermediate
point. The discard pipeline isan end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second passis stored.

At the end of the first pass, thisinformation is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipelinechainisaregular fileinstead of adiscard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsetsthat appear after the start of
the hint stream by the length of the hint stream, which isknown. Anything that is of variablelength is padded, with the
padding code surrounding any writing code that differsin the two passes. This ensures that changes to the way things
arerepresented never resultsin offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

8.5. Calculating Linearization Data

Once afileis optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were abug in the traversal code used to calculate the linearization data.)

8.6. Known Issues with Linearization

There are ahandful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for aweb browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

» Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionaly.

» We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

» Wegenerate only page offset, shared object, and outline hint tables. It would berel atively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

8.7. Debugging Note

The gpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using gpdf --show-object=n --filter ed-
stream-data. Then, to convert thisinto a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;

bi nnrbde STDI N;

undef $/;

ny $a = <STDI N>;

ny @h = split(//, $a);

map { printf("%8b", ord($)) } @h;
print "\n";

45

Chapter 9. Object and Cross-Reference
Streams

This chapter provides information about the implementation of object stream and cross-reference stream support in
gpdf.

9.1. Object Streams

Object streams can contain any regular object except the following:
* stream objects

 objectswith generation > 0

* the encryption dictionary

* objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though thisis not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 9.3, “Implications for Linearized Files’, page 47for
details.

The PDF specification refers to objects in object streams as “compressed objects’ regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with aregular object.

The object stream dictionary has the following keys:

» / N: number of objects

» / First: byte offset of first object

+ [/ Ext ends: indirect reference to stream that this extends

Stream collections are formed with / Ext ends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although gpdf preserves
stream collections, it never generates them and doesn't make use of thisinformation in any way.

The specification recommends limiting the number of objectsin object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
Stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themsel ves, concatenated.

9.2. Cross-Reference Streams

For non-hybrid files, the valuefollowing st ar t xr ef isthe byte offset to the xref stream rather than the word xr ef .

46

Object and Cross-Reference Streams

For hybridfiles (files containing both xref tablesand cross-reference streams), the xref table'strailer dictionary contains
the key / XRef St mwhose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any / Pr ev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a/ Pr ev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding / XRef St mpointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRef St m The appended xref tablewould point to the previous xref table which would point the/ XRef St m meaning
that the new / XRef St mdoesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

» [Type: value/ XRef

e / Si ze: valuen+1: where nis highest object number (sameas/ Si ze inthetrailer dictionary)

/ 1 ndex (optional): value[n count .. .] usedto determinewhich objects informationis stored in this stream.
Thedefaultis[0 / Si ze] .

» / Prev:vaueof f set : byte offset of previous xref stream (sameas/ Pr ev in the trailer dictionary)
* /W][...]:sizesof eachfieldinthe xref table

The other fieldsin the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

9.2.1. Cross-Reference Stream Data

The stream datais binary and encoded in big-endian byte order. Entries are concatenated, and each entry has alength
equal to thetotal of the entriesin/ Wabove. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by / Wabove. A 0 in/ Windicates that the field is omitted and
has the default value. The default value for the field typeis“1”. All other default valuesare “0”.

PDF 1.5 hasthree field types:
» 0O:forfreeobjects. Format: 0 obj next - gener at i on, sameasthefreetablein atraditional cross-referencetable
* 1: regular non-compressed object. Format: 1 of f set generati on

» 2: for objects in object streams. Format: 2 obj ect - st r eam nunber i ndex, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have thefirst entry inthetablebeO0 0 Oinsteadof 0 O ffff if thereare no deleted objects.

9.3. Implications for Linearized Files

For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streamsin place of regular xref tables. There are on special considerations.

47

Object and Cross-Reference Streams

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

9.4. Implementation Notes

Therearethree modesfor writing object streams: disable, preser ve, and gener ate. In disable mode, wedo not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
filesthat are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objectsand / Ext ends relationships asin the original file. Thisisequal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF versionis at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

48

Appendix A. Release Notes

For adetailed list of changes, please see the file Changelog in the source distribution.
10.3.0: March 4, 2021
» Bug Fixes

¢ The code for handling form fields when copying pages from 10.2.0 was not quite right and didn't work in a
number of situations, such aswhen the same page was copied multiple times or when there were conflicting
resource or field names across multiple copies. The 10.3.0 code has been much more thoroughly tested with
more complex cases and with a multitude of readers and should be much closer to correct. The 10.2.0 code
worked well enough for page splitting or for copying pageswith form fieldsinto documentsthat didn't already
have them but was still not quite correct in handling of field-level resources.

* When QPDF::replaceObject or QPDF::swapObjectsis called, existing QPDFObjectHandle instances no
longer point to the old objects. The next time they are accessed, they automatically notice the change to the
underlying object and update themselves. This resolves a very longstanding source of confusion, albeit in
avery rarely used method call.

« Fix form field handling code to look for default appearances, quadding, and default resources in the right
places. The code was not looking for things in the document-level interactive form dictionary that it was
supposed to be finding there. Thisrequired adding afew new methodsto QPDFFormFieldObjectHelper.

¢ Library Enhancements

* Reworked the code that handles copying annotations and form fields during page operations. There were
additional methods added to the public API from 10.2.0 and a one deprecation of a method added in 10.2.0.
The majority of the APl changes are in methods most people would never call and that will hopefully be
superseded by higher-level interfaces for handling page copies. Please see the Changelog file for details.

¢ The method QPDF::numWarnings was added so that you can tell whether any warnings happened during
a specific block of code.

10.2.0: February 23, 2021
» CLI Behavior Changes

» Operations that work on combining pages are much better about protecting form fields. In particul ar, --split-
pagesand --pages now preserveinteraction formfunctionality by copying therelevant form field information
fromtheoriginal files. Additionally, if you use --pagesto select only some pages from the original input file,
unused form fields are removed, which prevents lots of unused annotations from being retained.

« By default, qpdf no longer allows creation of encrypted PDF files whose user password is hon-empty and
owner password is empty when a 256-bit key isin use. The --allow-insecur e option, specified inside the --
encrypt options, allows creation of such files. Behavior changesin the CLI are avoided when possible, but
an exception was made here because this is security-related. gpdf must always allow creation of weird files
for testing purposes, but it should not default to letting users unknowingly create insecure files.

 Library Behavior Changes
« Note: the changes in this section cause differences in output in some cases. These differences change the

syntax of the PDF but do not change the semantics (meaning). | make a strong effort to avoid gratuitous
changesin gpdf's output so that gpdf changes don't break peopl€'stests. In this case, the changes significantly

49

Release Notes

improve the readability of the generated PDF and don't affect any output that's generated by simple
transformation. If you are annoyed by having to update test files, please rest assured that changes like this
have been and will continue to be rare events.

QPDFODbjectHandle: :newUnicodeString now uses whichever of ASCII, PDFDocEncoding, of UTF-16 is
sufficient to encode all the charactersin the string. This reduces needless encoding in UTF-16 of strings that
can be encoded in ASCII. This change may cause gpdf to generate different output than before when form
field values are set using QPDFFormFieldObjectHelper but does not change the meaning of the output.

The code that places form XObjects and also the code that flattens rotations trim trailing zeroes from
real numbers that they calculate. This causes slight (but semantically equivalent) differences in generated
appearance streams and form XObject invocations in overlay/underlay code or in user code that calls the
methods that place form X Objects on a page.

e CLI Enhancements

Add new command line options for listing, saving, adding, removing, and and copying file attachments. See
Section 3.7, “Embedded Files/Attachments Options’, page 17 for details.

Page splitting and merging operations, as well as --flatten-rotation, are better behaved with respect to
annotations and interactive form fields. In most cases, interactive form field functionality and proper
formatting and functionality of annotations is preserved by these operations. There are still some cases that
aren't perfect, such as when functionality of annotations depends on document-level data that gpdf doesn't
yet understand or when there are problems with referential integrity among form fields and annotations (e.g.,
when asingle form field object or its associated annotations are shared across multiple pages, acase that is
out of spec but that works in most viewers anyway).

The option --passwor d-file=f i | ename can now be used to read the decryption password from afile. You
can use - asthe file name to read the password from standard input. Thisis an easier/more obvious way to
read passwords from files or standard input than using @file for this purpose.

Add some information about attachments to the json output, and added at t achnent s as an additional
json key. The information included here is limited to the preferred name and content stream and areference
to the file spec object. This is enough detail for clients to avoid the hasse of navigating a name tree and
provides what is needed for basic enumeration and extraction of attachments. More detailed information can
be obtained by following the reference to the file spec object.

Add numeric option to --collate. If --collate=n is given, take pages in groups of n from the given files.

It isnow valid to provide --r otate=0 to clear rotation from a page.

* Library Enhancements

Thisreleaseincludes numerous additionsto the API. Not all changesarelisted here. Please seethe Changel.og
filein the source distribution for a comprehensive list. Highlights appear below.

Add QPDFObjectHandle::ditems() and QPDFObjectHandle::aitems() that enable C++-style iteration,
including range-for iteration, over dictionary and array QPDFObjectHandles. See commentsin include/qpdf/
QPDFObjectHandle.hh and examples/pdf-name-number -tree.cc for details.

Add QPDFObjectHandle:: copyStream for making a copy of a stream within the same QPDF instance.

Add new helper classes for supporting file attachments, also known as embedded files.
New classes are QPDFEmbeddedFileDocumentHelper, QPDFFileSpecObjectHelper, and
QPDFEFStreamObjectHelper. See their respective headers for details and examples/pdf-attach-file.cc
for an example.

50

Release Notes

* Add aversion of QPDFObjectHandle:: par se that takesa QPDF pointer as context so that it can parse strings
containing indirect object references. Thisisillustrated in examples/pdf-attach-file.cc.

* Re-implement QPDFNameTreeObjectHelper and QPDFNumberTreeObjectHelper to be more
efficient, add an iterator-based API, give them the capability to repair broken trees, and create methods for
modifying thetrees. With this change, gpdf has arobust read/writeimplementation of name and number trees.

* Add new versions of QPDFObjectHandle::replaceSreamData that take std::function objects for cases
when you need something between a static string and a full-fledged StreamDataProvider. Using this with
QUitil::file_provider isavery easy way to create a stream from the contents of afile.

* The QPDFMatrix class, formerly a private, interna class, has been added to the public API. See include/
gpdf/QPDFMatrix.hh for details. This classis for working with transformation matrices. Some methods in
QPDFPageObjectHelper make use of thisto make information about transformation matrices available.
For an example, see examples/pdf-overlay-page.cc.

* Several new methods were added to QPDFAcroFormDocumentHelper for adding, removing, getting
information about, and enumerating form fields.

* Add method QPDFAcroFormDocumentHel per::transformAnnotations, which applies a transformation to
each annotation on a page.

* Add QPDFPageObjectHel per::copyAnnotations, which copies annotations and, if applicable, associated
form fields, from one page to another, possibly transforming the rectangles.

 Build Changes

e A C++-14 compiler is now required to build gpdf. There is no intention to require anything newer than that
for awhile. C++-14 includes modest enhancements to C++-11 and appears to be supported about as widely
as C++-11.

* Bug Fixes
« The --flatten-rotation option applies transformations to any annotations that may be on the page.

« If aform XObject lacks a resources dictionary, consider any names in that form X Object to be referenced
from the containing page. This is compliant with older PDF versions. Also detect if any form XObjects
have any unresolved names and, if so, don't remove unreferenced resources from them or from the page
that contains them. Unfortunately this has the side effect of preventing removal of unreferenced resources
in some cases where names appear that don't refer to resources, such as with tagged PDF. This is a bit of
acorner case that is not likely to cause a significant problem in practice, but the only side effect would be
lack of removal of shared resources. A future version of gpdf may be more sophisticated in its detection of
names that refer to resources.

« Properly handle strings if they appear in inline image dictionaries while externalizing inline images.
10.1.0: January 5, 2021
» CLI Enhancements

¢ Add--flatten-rotation command-line option, which causes all pagesthat are rotated using parametersin the
page's dictionary to instead be identically rotated in the page's contents. The change is not user-visible for
compliant PDF readers but can be used to work around broken PDF applications that don't properly handle
page rotation.

 Library Enhancements

51

Release Notes

» Support for user-provided (pluggable, modular) stream filters. It is now possible to derive a class from
QPDFStreamFilter and register it with QPDF so that regular library methods, including those used by
QPDFWriter, can decode streams with filters not directly supported by the library. The example examples/
pdf-custom-filter.cc illustrates how to use this capability.

* Add methods to QPDFPageObjectHelper to iterate through XObjects on a page or form XObjects,
possibly recursing into nested form X Objects: for EachXObject, For Eachlmage, for EachFormXObject.

* Enhance several methods in QPDFPageObjectHelper to work with form XObjects as well as pages, as
noted in comments. See Changel.og for afull list.

* Rename some functionsin QPDFPageObjectHelper, while keeping old names for compatibility:

* getPagel magesto getlmages

filter PageContents to filter Contents
* pipePageContents to pipeContents
» parsePageContents to parseContents

¢ Add method QPDFPageObjectHelper:: getFormXObjects to return a map of form XObjects directly on a
page or form X Object

* Add new helper methods to QPDFObjectHandle: isFormXObject, isimage

e Add the optiona allow_streams parameter QPDFObjectHandle::makeDirect. When
QPDFObjectHandle::makeDirectiscalledinthisway, it preservesreferencesto streamsrather than throwing
an exception.

« Add QPDFObjectHandle:: setFilterOnWrite method. Calling this on a stream prevents QPDFWriter from
attempting to uncompress, recompress, or otherwise filter a stream even if it could. Developers can use this

to protect streams that are optimized should be protected from QPDFWriter's default behavior for any other
reason.

* Addostream << operator for QPDFObjGen. Thisisuseful to have for debugging.

« Add method QPDFPageObjectHelper::flattenRotation, which replaces a page's / Rot at e keyword by
rotating the page within the content stream and altering the page's bounding boxes so the rendering is the
same. This can be used to work around buggy PDF readers that can't properly handle page rotation.

C APl Enhancements

* Add severa new functions to the C API for working with objects. These are wrappers around many of the
methods in QPDFObjectHandle. Their inclusion adds considerable new capability to the C API.

 Add gpdf_register_progress reporter to the C AP, corresponding to
QPDFWriter::register ProgressReporter.

Performance Enhancements

* Improve steps QPDFWriter takes to prepare a QPDF object for writing, resulting in about an 8%
improvement in write performance while allowing indirect objects to appear in/ DecodePar ns.

52

Release Notes

When extracting pages, the qpdf CLI only removes unreferenced resources from the pages that are being
kept, resulting in asignificant performance improvement when extracting small numbers of pagesfrom large,
complex documents.

* Bug Fixes

QPDFPageObjectHel per::externalizelnlinelmages was not externalizing images referenced from form
XObjects that appeared on the page.

QPDFObjectHandle: :filter PageContents was broken for pages with multiple content streams.

Tweak zsh completion code to behave alittle better with respect to path completion.

10.0.4: November 21, 2020

* Bug Fixes

L]

Fix ahandful of integer overflows. Thisincludes cases found by fuzzing as well as having qpdf not do range
checking on unused values in the xref stream.

10.0.3: October 31, 2020

* Bug Fixes

The fix to the bug involving copying streams with indirect filters was incorrect and introduced a new, more
serious bug. The original bug has been fixed correctly, as has the bug introduced in 10.0.2.

10.0.2: October 27, 2020

* Bug Fixes

When concatenating content streams, as with --coalesce-contents, there were cases in which gpdf would
mergetwo lexical tokenstogether, creatinginvalid results. A newlineisnow inserted between merged content
streamsif oneisnot aready present.

Fix an internal error that could occur when copying foreign streams whose stream data had been replaced
using a stream data provider if those streams had indirect filters or decode parameters. Thisis arare corner
case.

Ensure that the caller's local e settings do not change the results of numeric conversions performed internally
by the gpdf library. Note that the problem here could only be caused when the gpdf library was used
programmatically. Using the gpdf CLI aready ignored the user's locale for numeric conversion.

Fix severa instances in which warnings were not suppressed in spite of --no-war n and/or errors or warnings
were written to standard output rather than standard error.

Fixed a memory leak that could occur under specific circumstances when --obj ect-str eams=gener ate was
used.

Fix variousinteger overflows and similar conditions found by the OSS-Fuzz project.

¢ Enhancements

New option --war ning-exit-0 causes gpdf to exit with a status of O rather than 3 if there are warnings but
no errors. Combine with --no-war n to completely ignore warnings.

Performance improvements have been made to QPDF:: processMemoryFile.

53

Release Notes

The OpenSSL crypto provider produces more detailed error messages.

* Build Changes

The option --disable-rpath is now supported by gpdf's ./configure script. Some distributions' packaging
standards recommended the use of this option.

Selection of a printf format string for | ong | ong has been moved from i f def s to an autoconf test. If
you are using your own build system, you will need to provide a value for LL__FMT in libgpdf/qpdf/qpdf-
config.h, which would typically be" % | d" or, for some Windows compilers, " %8 64d" .

Several improvements were made to build-time configuration of the OpenSSL crypto provider.

A nearly stand-alone Linux binary zip fileis now included with the qpdf release. Thisisbuilt on an older (but
supported) Ubuntu LTS release, but would work on most reasonably recent Linux distributions. It contains
only the executables and required shared libraries that would not be present on a minimal system. It can be
used for including gpdf in a minimal environment, such as a docker container. The zip file is also known
towork as alayer in AWS Lambda.

QPDF's automated build has been migrated from Azure Pipelines to GitHub Actions.

» Windows-specific Changes

L]

The Windows executables distributed with qpdf releases now use the OpenSSL crypto provider by
default. The native crypto provider is aso compiled in and can be selected at runtime with the
QPDF_CRYPTO_PROVI DER environment variable.

Improvements have been made to how a cryptographic provider is obtained in the native Windows crypto
implementation. However mostly thisis shadowed by OpenSSL being used by default.

10.0.1: April 9, 2020

» Bug Fixes

10.0.0 introduced a bug in which calling QPDFObjectHandle::getSreamData on a stream that can't be
filtered was returning the raw data instead of throwing an exception. Thisis now fixed.

Fix abug that was preventing gpdf from linking with some versions of clang on some platforms.

* Enhancements

Improve the pdf-invert-images example to avoid having to load all theimagesinto RAM at the same time.

10.0.0: April 6, 2020

» Performance Enhancements

Thegpdf library and executable should run much faster in thisversion thanin thelast several releases. Severd
internal library optimizations have been made, and there has been improved behavior on page splitting as
well. This version of gpdf should outperform any of the 8.x or 9.x versions.

 Incompatible API (source-level) Changes (minor)

The QUItil::srandom method was removed. It didn't do anything unless insecure random numbers were
compiled in, and they have been off by default for along time. If you were calling it, just remove the call
since it wasn't doing anything anyway.

 Build/Packaging Changes

Release Notes

Add aopenssl crypto provider, which is implemented with OpenSSL and also works with BoringSSL.
Thanks to Dean Scarff for this contribution. If you maintain qpdf for a distribution, pay special attention to
make sure that you are including support for the crypto providers you want. Package maintainers will have
to weigh the advantages of allowing users to pick a crypto provider at runtime against the disadvantages of
adding more dependencies to gpdf.

Allow gpdf to built on stripped down systems whose C/C++ libraries lack the wchar_t type. Search for
wchar_t in gpdf's README.md for details. This should be very rare, but it is known to be helpful in some
embedded environments.

e CLI Enhancements

Add obj ecti nf o key to the JSON output. This will be a place to put computed metadata or other
information about PDF objects that are not immediately evident in other ways or that seem useful for some
other reason. In thisversion, information is provided about each object indicating whether it is a stream and,
if so, what its length and filters are. Without this, it was not possible to tell conclusively from the JSON
output alone whether or not an object was a stream. Run qpdf --json-help for details.

Add new option --remove-unr efer enced-r esour ces which takes aut o, yes, or no as arguments. The new
aut o mode, which isthe default, performs afast heuristic over a PDF file when splitting pages to determine
whether the expensive process of finding and removing unreferenced resources is likely to be of benefit.
For most files, this new default will result in asignificant performance improvement for splitting pages. See
Section 3.9, “Advanced Transformation Options’, page 19 for amore detailed discussion.

The--preserve-unr efer enced-r esour cesis now just asynonym for --r emove-unr efer enced-r esour ces=no.

If the QPDF_EXECUTABLE environment variable is set when invoking qpdf --bash-completion or gpdf --
zsh-completion, the completion command that it outputs will refer to gpdf using the value of that variable
rather than what qpdf determines its executable path to be. This can be useful when wrapping qpdf with
a script, working with a version in the source tree, using an Applmage, or other situations where there is
some indirection.

* Library Enhancements

L]

Random number generation is now delegated to the crypto provider. The old behavior is still used by the
native crypto provider. It is still possible to provide your own random number generator.

Add a new version of QPDFObjectHandle:: SreamDataProvider::provideStreamData that accepts the
suppress warningsand will_retry options and allows a success code to be returned. Thismakesit possibleto
implement a StreamDataProvider that calls pipeStreamData on another stream and to pass the response
back to the caller, which enables better error handling on those proxied streams.

Update QPDFObjectHandle:: pipeSreamData to return an overall success code that goes beyond whether
or not filtered datawas written successfully. This allows better error handling of cases that were not filtering
errors. You have to cal this explicitly. Methods in previoudly existing APIs have the same semantics as
before.

The QPDFPageObjectHelper::placeFormXObject method now alows separate control over whether it
should be willing to shrink or expand objects to fit them better into the destination rectangle. The previous
behavior was that shrinking was allowed but expansion was not. The previous behavior is till the default.

When calling the C API, any non-zero value passed to a boolean parameter is treated as TRUE. Previously
only the value 1 was accepted. This makes the C API behave more like most C interfaces and is known to
improve compatibility with some Windows environments that dynamically load the DLL and call functions
fromit.

55

Release Notes

* Add QPDFObjectHandle: : unsafeShallowCopy for copying only top-level dictionary keys or array items.
This is unsafe because it creates a situation in which changing a lower-level item in one object may also
change it in another object, but for cases in which you know you are only inserting or replacing top-level
items, it is much faster than QPDFObjectHandle: : shallowCopy.

« Add QPDFObjectHandle::filter AsContents, which filter's a stream's data as a content stream. Thisis useful
for parsing the contents for form X Objectsin the same way as parsing page content streams.

* Bug Fixes

* When detecting and removing unreferenced resources during page splitting, traverse into form X Objects and
handle their resources dictionaries as well.

« The same error recovery is applied to streams in other than the primary input file when merging or splitting
pages.

9.1.1: January 26, 2020
 Build/Packaging Changes

« The fix-qdf program was converted from perl to C++. As such, gpdf no longer has a runtime dependency
on perl.

 Library Enhancements

e Added new helper routine QULtil::call_main_from wmain which convertswchar _t argumentsto UTF-8
encoded strings. This is useful for qpdf because library methods expect file names to be UTF-8 encoded,
even on Windows

¢ Added new QUtil::read_lines from file methods that take FI LE* arguments and that allow preservation
of end-of-line characters. This also fixes a bug where QULtil::read lines from file wouldn't work properly
with Unicode filenames.

e CLI Enhancements

» Added options --is-encrypted and --requires-password for testing whether afile is encrypted or requires
a password other than the supplied (or empty) password. These communicate via exit status, making them
useful for shell scripts. They also work on encrypted files with unknown passwords.

e Added encrypt key to JSON options. With the exception of the reconstructed user password for older
encryption formats, this provides the same information as --show-encryption but in a consistent, parseable
format. See output of qpdf --json-help for details.

* Bug Fixes

* In QDF mode, be sure not to write more than one X Ref stream to afile, even when --pr eser ve-unr efer enced
isused. fix-qdf assumes that there is only one XRef stream, and that it appears at the end of the file.

* When externalizing inline images, properly handle images whose color space is a reference to an object in
the page's resource dictionary.

« Windows-specific fix for acquiring crypt context with a new keyset.
9.1.0: November 17, 2019

* Build Changes

56

Release Notes

e A C++-11 compiler is now required to build gpdf.

* A new crypto provider that uses gnutlsfor crypto functionsisnow available and can be enabled at build time.
See Section 2.3, “Crypto Providers’, page 3 for more information about crypto providers and Section 2.3.1,
“Build Support For Crypto Providers’, page 3 for specific information about the build.

* Library Enhancements

« Incorporate contribution from Masamichi Hosoda to properly handle signature dictionaries by not including
them in object streams, formatting the Cont ent s key has a hexadecimal string, and excluding the /
Cont ent s key from encryption and decryption.

* Incorporate contribution from Masamichi Hosodato provide new API callsfor getting file-level information
about input and output files, enabling certain operations on the files at the file level rather than
the abject level. New methods include QPDF::getXRefTable(), QPDFObjectHandle:: getPar sedOffset(),
QPDFWriter:: getRenumberedObjGen(QPDFObjGen), and QPDFWriter:: getWrittenXRefTable().

e Support build-time and runtime selectable crypto providers. This includes the addition of new classes
QPDFCryptoProvider and QPDFCryptolmpl and the recognition of the QPDF _CRYPTO_PROVI DER
environment variable. Crypto providers are described in depth in Section 2.3, “ Crypto Providers’, page 3.

* CLI Enhancements

« Addition of the --show-crypto option in support of selectable crypto providers, as described in Section 2.3,
“Crypto Providers’, page 3.

« Allow : even or : odd to be appended to numeric ranges for specification of the even or odd pages from
among the pages specified in the range.

 Fix shell wildcard expansion behavior (* and ?) of the qpdf.exe as built my MSVC.
9.0.2: October 12, 2019
» Bug Fix

 Fix the name of the temporary file used by --replace-input so that it doesn't require path splitting and works
with pathsinclude directories.

9.0.1: September 20, 2019
* Bug Fixes/Enhancements

» Fix some build and test issues on hig-endian systems and compilers with characters that are unsigned by
default. The problemswerein build and test only. There were no actual bugsin the gpdf library itself relating
to endianness or unsigned characters.

* When adictionary has a duplicated key, report this with awarning. The behavior of the library in this case
is unchanged, but the error condition is no longer silently ignored.

* When aform field's display rectangle is erroneously specified with inverted coordinates, detect and correct
this situation. This avoids some form fields from being flipped when flattening annotations on files with
this condition.

9.0.0: August 31, 2019

» Incompatible API (source-level) Changes (minor)

57

Release Notes

The method QUIil:: strcasecmp has been renamed to QUIil::str_compare_nocase. Thisincompatible change
is necessary to enable gpdf to build on platforms that define strcasecmp as a macro.

The QPDF:: copyForeignObject method had an overloaded version that took a boolean parameter that was
not used. If you were using this version, just omit the extra parameter.

There was a version QPDFTokenizer ::expectinlinelmage that took no arguments. This version has been
removed since it caused the tokenizer to return incorrect inline images. A new version was added sometime
ago that produces correct output. Thisis avery low level method that doesn't make sense to call outside of
gpdf'slexical engine. There are higher level methods for tokenizing content streams.

Change QPDFOutlineDocumentHel per :: getTopLevel Outlines and QPDFOutlineObjectHel per: : getKids to
returnast d: : vect or instead of astd: : | i st of QPDFOutlineObjectHelper objects.

Remove method QPDFTokenizer::allowPoundAnywherelnName. This function would alow creation of
name tokens whose value would change when unparsed, which is never the correct behavior.

CLI Enhancements

The --replace-input option may be given in place of an output file name. This causes gpdf to overwrite the
input file with the output. See the description of --replace-input in Section 3.3, “Basic Options’, page 7
for more details.

The --recompress-flate instructs qpdf to recompress streams that are already compressed with /
FI at eDecode. Useful with --compression-level.

The --compression-level=l evel sets the zlib compression level used for any streams compressed by /
FI at eDecode. Most effective when combined with --recompr ess-flate.

Library Enhancements

A new namespace QIntC, provided by gpdf/QIntC.hh, provides safe conversion methods between different
integer types. These conversion methods do range checking to ensure that the cast can be performed with no
loss of information. Every use of static_cast in the library was inspected to see if it could use one of these
safe converters instead. See Section 7.5, “ Casting Policy”, page 38 for additional details.

Method QPDF::anyWarnings tells whether there have been any warnings without clearing the list of
warnings.

Method QPDF:: closel nputSource closes or otherwise releases the input source. This enables the input file
to be deleted or renamed.

New methods have been added to QUItil for converting back and forth between strings and unsigned integers:
uint_to_string, uint_to_string_base, string_to_uint, and string_to_ull.

New methods have been added to QPDFObjectHandle that return the value of Integer objectsasi nt or
unsi gned i nt with range checking and sensible fallback values, and a new method was added to return
an unsigned value. This makes it easier to write code that is safe from unintentional data loss. Functions:
getUIntValue, getintVauleAsint, getUIntValueAsUInt.

When parsing content streams with QPDFObjectHandle::ParserCallbacks, in place of the method
handleObject(QPDFObjectHandl€), the developer may override handleObject(QPDFObjectHandle, size t
offset, size t length). If this method is defined, it will be invoked with the object along with its offset and
length within the overall contents being parsed. Intervening spaces and comments are not included in offset

58

Release Notes

and length. Additionally, anew method contentSize(size t) may be implemented. If present, it will be called
prior to the first call to handleObject with the total size in bytes of the combined contents.

New methods QPDF::userPasswordMatched and QPDF::owner PasswordMatched have been added to
enable a caller to determine whether the supplied password was the user password, the owner password, or
both. Thisinformation is also displayed by gpdf --show-encryption and gpdf --check.

Static method Pl_Flate:: setCompressionLevel can be called to set the zlib compression level globally used
by all instances of PI_Flate in deflate mode.

The method QPDFWriter::setRecompressilate can be called to tell QPDFWriter to uncompress and
recompress streams already compressed with / Fl at eDecode.

The underlying implementation of QPDF arrays has been enhanced to be much more memory efficient when
dealing with arrays with lots of nulls. This enables qpdf to use drastically less memory for certain types of
files.

When traversing the pagestree, if nodes are encountered with invalid types, the typesarefixed, and awarning
isissued.

A new helper method QUtil::read_file_into_memory was added.
All conditions previously reported by QPDF::checkLinearization() as errors are now presented as warnings.
Name tokens containing the # character not preceded by two hexadecimal digits, which isinvalid in PDF

1.2 and above, are properly handled by the library: a warning is generated, and the name token is properly
preserved, even if invalid, in the output. See Changel.og for a more complete description of this change.

Bug Fixes

A small handful of memory issues, assertion failures, and unhandled exceptions that could occur on badly
mangled input files have been fixed. Most of these problems were found by Google's OSS-Fuzz project.

When gpdf --check or gpdf --check-linearization encounters a file with linearization warnings but not
errors, it now properly exits with exit code 3 instead of 2.

The --completion-bash and --completion-zsh options now work properly when gpdf is invoked as an
Applmage.

Calling QPDFWriter::set* EncryptionParameters on a QPDFWriter object whose output filename has not
yet been set no longer produces a segmentation fault.

When reading encrypted files, follow the spec more closely regarding encryption key length. This allows
gpdf to open encrypted filesin most cases when they have invalid or missing /Length keysin the encryption
dictionary.

Build Changes

On platformsthat support it, gpdf now buildswith -fvisibility=hidden. If you build gpdf with your own build
system, thisisnow safe to use. This prevents methods that are not part of the public API from being exported
by the shared library, and makes qpdf's ELF shared libraries (used on Linux, MacOS, and most other UNIX
flavors) behave morelikethe Windows DLL. Sincethe DLL aready behavesin much thisway, it isunlikely
that there are any methods that were accidentally not exported. However, with ELF shared libraries, typeinfo
for some classes has to be explicitly exported. If there are problems in dynamically linked code catching
exceptions or subclassing, this could be the reason. If you see this, please report a bug at https://github.com/
gpdf/gpdf/issues/.

59

https://github.com/qpdf/qpdf/issues/
https://github.com/qpdf/qpdf/issues/

Release Notes

* QPDF is now compiled with integer conversion and sign conversion warnings enabled. Numerous changes
were made to the library to make this safe.

* QPDF'smakeinstall target explicitly specifies the mode to use when installing files instead of relying the
user's umask. It was previously doing this for some files but not others.

« If pkg-config is available, use it to locate libjpeg and Zib dependencies, falling back on old behavior if
unsuccessful.

e Other Notes

* QPDF has been fully integrated into Google's OSS-Fuzz project [https://github.com/google/oss-fuzz]. This
project exercises code with randomly mutated inputs and is great for discovering hidden security crashesand
security issues. Several bugs found by oss-fuzz have already been fixed in gpdf.

8.4.2: May 18, 2019

Thisrelease has just one change: correction of abuffer overrun in the Windows code used to open files. Windows
users should take this update. There are no code changes that affect non-Windows releases.

8.4.1: April 27, 2019
» Enhancements

* When gpdf --version isrun, it will detect if the gpdf CLI was built with a different version of gpdf than the
library, which may indicate a problem with the installation.

« New option --remove-page-labels will remove page labels before generating output. This used to happen if
you ran gqpdf --empty --pages .. --, but the behavior changed in gpdf 8.3.0. This option enables people who
were relying on the old behavior to get it again.

« New option --keep-files-open-threshold=count can be used to override number of files that gpdf will use
to trigger the behavior of not keeping all files open when merging files. Thismay be necessary if your system
allows fewer than the default value of 200 files to be open at the same time.

* Bug Fixes

» Handle Unicode characters in filenames on Windows. The changes to support Unicode on the CLI in
Windows broke Unicode filenames for Windows.

 Slightly tighten logic that determines whether an object is a page. This should resolve problemsin somerare
files where some non-page objects were passing gpdf's test for whether something was a page, thus causing
them to be erroneously lost during page splitting operations.

* Revert change that included preservation of outlines (bookmarks) in --split-pages. The way it was
implementedin 8.3.0 and 8.4.0 caused avery significant degradation of performancefor splitting certainfiles.
A future release of qpdf may re-introduce the behavior in a more performant and aso more correct fashion.

* In JSON mode, add missing leading O to decimal values between -1 and 1 even if not present in the input.
The JSON specification requires the leading 0. The PDF specification does not.

8.4.0: February 1, 2019
» Command-line Enhancements

< Non-compatible CLI change: The gpdf command-line tool interprets passwords given at the command-line
differently from previous releases when the passwords contain non-ASCI| characters. In some cases, the

60

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

Release Notes

behavior differs from previous releases. For a discussion of the current behavior, please see Section 3.11,
“Unicode Passwords’, page 26. The incompatibilities are as follows:

* On Windows, gpdf now receives all command-line options as Unicode strings if it can figure out the
appropriate compile/link options. Thisis enabled at least for MSV C and mingw builds. That means that
if non-ASCI|I strings are passed to the gpdf CLI in Windows, qpdf will now correctly receive them. In the
past, they would have either been encoded as Windows code page 1252 (al so known as“Windows ANSI”
or as something unintelligible. In aimost all cases, gpdf is able to properly interpret Unicode arguments
now, whereas in the past, it would ailmost never interpret them properly. The result is that non-ASCI|
passwords given to the gpdf CLI on Windows now have a much greater chance of creating PDF files that
can be opened by a variety of readers. In the past, usually files encrypted from the Windows CLI using
non-ASCII passwordswould not be readable by most viewers. Note that the current version of gpdf isable
to decrypt filesthat it previously created using the previously supplied password.

» The PDF specification requires passwords to be encoded as UTF-8 for 256-bit encryption and with PDF
Doc encoding for 40-bit or 128-hit encryption. Older versions of gpdf left it up to the user to provide
passwords with the correct encoding. The gpdf CLI now detects when a password is given with UTF-8
encoding and automatically transcodes it to what the PDF spec requires. While this is ailmost always the
correct behavior, it is possible to override the behavior if there is some reason to do so. This is discussed
in more depth in Section 3.11, “Unicode Passwords’, page 26.

« New options--exter nalize-inline-images, --ii-min-bytes, and --keep-inline-images control gpdf's handling
of inline images and possible conversion of them to regular images. By default, --optimize-images now
also applies to inline images. These options are discussed in Section 3.9, “Advanced Transformation
Options’, page 19.

« Add options --overlay and --under lay for overlaying or underlaying pages of other files onto output pages.
See Section 3.6, “Overlay and Underlay Options’, page 16 for details.

* When opening an encrypted file with a password, if the specified password doesn't work and the password
contains any non-ASCII characters, gpdf will try a number of alternative passwords to try to compensate for
possible character encoding errors. Thisbehavior can be suppressed with the --suppr ess-passwor d-r ecovery
option. See Section 3.11, “Unicode Passwords’, page 26 for afull discussion.

* Add the --passwor d-mode option to fine-tune how gpdf interprets password arguments, especialy when
they contain non-ASCI| characters. See Section 3.11, “Unicode Passwords’, page 26 for more information.

 Inthe --pages option, it is now possible to copy the same page more than once from the same file without
using the previous workaround of specifying two different paths to the samefile.

« Inthe --pages option, alow use of “.” as a shortcut for the primary input file. That way, you can do gpdf
in.pdf --pages . 1-2 -- out.pdf instead of having to repeat in.pdf in the command.

« When encrypting with 128-bit and 256-bit encryption, new encryption options --assemble, --annotate, --
form, and --modify-other allow more fine-grained granularity in configuring options. Before, the --modify
option only configured certain predefined groups of permissions.

Bug Fixes and Enhancements

» Potential data-loss bug: Versions of gpdf between 8.1.0 and 8.3.0 had a bug that could cause page splitting
and merging operations to drop some font or image resources if the PDF file'sinternal structure shared these
resource lists across pages and if some but not all of the pagesin the output did not reference all the fontsand
images. Using the --preser ve-unr efer enced-r esour ces option would work around the incorrect behavior.
Thisbug wastheresult of atypo in the code and adeficiency inthetest suite. The casethat triggered the error
was known, just not handled properly. This caseis now exercised in gpdf's test suite and properly handled.

61

Release Notes

When optimizing images, detect and refuse to optimize images that can't be converted to JPEG because of
bit depth or color space.

Linearization and page manipulation APIs now detect and recover from filesthat have duplicate Page objects
in the pages tree.

Using older option --str eam-data=compr ess with object streams, object streams and xref streams were not
compressed.

When the tokenizer returns inline image tokens, delimiters following | D and ElI operators are no longer
excluded. This makes it possible to reliably extract the actual image data.

Library Enhancements

Add method QPDFPageObjectHel per: : exter nalizel nlinel mages to convert inline images to regular images.

Add method QUIil::possible repaired encodings() to generate alist of strings that represent other ways the
given string could have been encoded. Thisis the method the QPDF CL I uses to generate the stringsit tries
when recovering incorrectly encoded Unicode passwords.

Add new versions of QPDFWriter::setR{3,4,5,6} EncryptionParameters that allow more granular setting of
permissions bits. See QPDFWriter.hh for details.

Add new versions of the transcoders from UTF-8 to single-byte coding systemsin QULtil that report success
or failure rather than just substituting a specified unknown character.

Add method QUItil::analyze_encoding() to determine whether a string has high-bit characters and is appears
to be UTF-16 or valid UTF-8 encoding.

Add new method QPDFPageObjectHelper::shallowCopyPage() to copy a new page that is a
“shallow copy” of a page. The resulting object is an indirect object ready to be passed to
QPDFPageDocumentHel per::addPage() for either the original QPDF object or adifferent one. Thisiswhat
the qpdf command-line tool uses to copy the same page multiple times from the same file during splitting
and merging operations.

Add method QPDF::getUniqueld(), which returns a unique identifier for the given QPDF object. The
identifier will be unique acrossthelife of the application. The returned value can be safely used asamap key.

Add method QPDF:: setl mmediateCopyFrom. This further enhances gpdf's ability to allow a QPDF object
from which objects are being copied to go out of scope before the destination object is written. If you call
this method on a QPDF instances, objects copied from this instance will be copied immediately instead of
lazily. This option uses more memory but allows the source object to go out of scope before the destination
object iswritten in al cases. See comments in QPDF.hh for details.

Add method QPDFPageObjectHelper::getAttribute for retrieving an attribute from the page dictionary
taking inheritanceinto consideration, and optionally making acopy if your intention isto modify theattribute.

Fix long-standing limitation of QPDFPageObjectHelper::getPagelmages so that it now
properly reports images from inherited resources dictionaries, eliminating the need to call
QPDFPageDocumentHel per:: pushlnheritedAttributesToPage in this case.

Add method QPDFObjectHandle: :getUniqueResourceName for finding an unused name in a resource
dictionary.

62

Release Notes

* Add method QPDFPageObjectHel per: : getFor mXObjectFor Page for generating aform X Object equivalent
to apage. The resulting object can be used in the samefile or copied to another file with copyForeignObject.
This can be useful for implementing underlay, overlay, n-up, thumbnails, or any other functionality requiring
replication of pagesin other contexts.

¢ Add method QPDFPageObjectHelper:: placeFormXObject for generating content stream text that places
a given form XObject on a page, centered and fit within a specified rectangle. This method takes care of
computing the proper transformation matrix and may optionally compensate for rotation or scaling of the
destination page.

Build Improvements

* Add new configure option --enable-avoid-windows-handle, which causes the preprocessor symbol
AVO D_W NDOA5_HANDLE to be defined. When defined, gpdf will avoid referencing the Windows
HANDLE type, which is disallowed with certain versions of the Windows SDK.

 For Windows builds, attempt to determine what options, if any, have to be passed to the compiler and linker
to enable use of wmain. This causes the preprocessor symbol W NDOAS_WWVAI N to be defined. If you do
your own builds with other compilers, you can define this symbol to cause wmain to be used. Thisis needed
to allow the Windows gpdf command to receive Unicode command-line options.

8.3.0: January 7, 2019

Command-line Enhancements

 Shell completion: you can now use eval $(qpdf --completion-bash) and eval $(qpdf --completion-zsh) to
enable shell completion for bash and zsh.

« Page numbers (also known as page labels) are now preserved when merging and splitting files with the --
pages and --split-pages options.

« Bookmarks are partially preserved when splitting pages with the --split-pages option. Specificaly, the
outlines dictionary and some supporting metadata are copied into the split files. The result is that al
bookmarks from the original file appear, those that point to pages that are preserved work, and those that
point to pages that are not preserved don't do anything. This is an interim step toward proper support for
bookmarks in splitting and merging operations.

e Page collation: add new option --collate. When specified, the semantics of --pages change from
concatenation to collation. See Section 3.5, “Page Selection Options’, page 14 for examples and discussion.

¢ Generation of information in JSON format, primarily to facilitate use of gpdf from languages other than C
++. Add new options --json, --json-key, and --j son-object to generate a JSON representation of the PDF
file. Run gpdf --json-help to get a description of the JSON format. For more information, see Chapter 6,
QPDF JON, page 32.

« The --gener ate-appear ances flag will cause gpdf to generate appearances for form fields if the PDF file
indicates that form field appearances are out of date. This can happen when PDF forms are filled in by a
program that doesn't know how to regenerate the appearances of thefilled-in fields.

« The --flatten-annotations flag can be used to flatten annotations, including form fields. Ordinarily,
annotations are drawn separately from the page. Flattening annotations is the process of combining their
appearances into the page's contents. Y ou might want to do thisif you are going to rotate or combine pages
using atool that doesn't understand about annotations. Y ou may also want to use --gener ate-appear ances
when using this flag since annotations for outdated form fields are not flattened as that would cause loss
of information.

63

Release Notes

The --optimize-images flag tells gpdf to recompresses every image using DCT (JPEG) compression aslong
as the image is not aready compressed with lossy compression and recompressing the image reduces its
size. The additional options --oi-min-width, --oi-min-height, and --oi-min-ar ea prevent recompression of
images whose width, height, or pixel area (width x height) are below a specified threshold.

The --show-obj ect option can now be given as --show-obj ect=trailer to show the trailer dictionary.

* Bug Fixes and Enhancements

QPDF now automatically detects and recovers from dangling references. If a PDF file contained an indirect
reference to anon-existent object, which isvalid, when adding anew object to thefile, it was possible for the
new object to take the object ID of the dangling reference, thereby causing the dangling reference to point
to the new object. This case is now prevented.

Fixes to form field setting code: strings are always written in UTF-16 format, and checkboxes and radio
buttons are handled properly with respect to synchronization of values and appearance states.

The QPDF::checkLinearization() no longer causes the program to crash when it detects problems with
linearization data. Instead, it issues a normal warning or error.

Ordinarily gpdf treats an argument of the form @file to mean that command-line options should be read from
file. Now, if file does not exist but @file does, qpdf will treat @file asaregular option. Thismakesit possible
to work more easily with PDF files whose names happen to start with the @character.

 Library Enhancements

Remove the restriction in most cases that the source QPDF object used in a QPDF:: copyForeignObject call
has to stick around until the destination QPDF is written. The exceptional case is when the source stream
getsisdatausing a QPDFObjectHandle:: StreamDataProvider. For amorein-depth discussion, see comments
around copyForeignObject in QPDF.hh.

Add new method QPDFWriter::getFinalVersion(), which returns the PDF version that will ultimately be
written to the final file. See comments in QPDFWriter.hh for some restrictions on its use.

Add severa methods for transcoding strings to some of the character sets used in PDF files:
QUitil::utf8 to_ascii, QUIil::utf8 to win_ansi, QULtil:;utf8 to mac roman, and QUtil::utf8 to utf16. For
the single-byte encodings that support only a limited character sets, these methods replace unsupported
characters with a specified substitute.

Add new methods to QPDFAnnotationObjectHelper and QPDFFormFieldObjectHelper for
querying flags and interpretation of different field types. Define constants in gpdf/Constants.h to help with
interpretation of flag values.

Add new methods QPDFAcroFormDocumentHel per : : generateAppear ancesl fNeeded and
QPDFFormFieldObjectHel per:: generateAppearance for generating appearance streams. See discussion in
QPDFFormFieldObjectHel per.hh for limitations.

Add two new hel per functions for dealing with resource dictionaries:
QPDFObjectHandle: : getResourceNames() returns a list of all second-level keys, which correspond to the
names of resources, and QPDFObjectHandle:: mergeResour ces() merges two resources dictionaries as long
asthey have non-conflicting keys. These methods are useful for certain types of objectsthat resolve resources
from multiple places, such asform fields.

Release Notes

e Add methods QPDFPageDocumentHel per: : flattenAnnotati ons() and
QPDFAnNNotationObjectHel per :: getPageContentFor Appearance() for handling low-level details of
annotation flattening.

* Add new helper classess QPDFOutlineDocumentHelper, QPDFOutlineObjectHelper,
QPDFPagelLabelDocumentHelper, QPDFNameTreeObjectHelper, and
QPDFNumberTreeObjectHelper.

e Add method QPDFObjectHandle::getJSON() that returns a JSON representation of the object. Call
serialize() on the result to convert it to astring.

¢ Add asimple JSON serializer. Thisis not a complete or general-purpose JSON library. It allows assembly
and serialization of JSON structures with some restrictions, which are described in the header file. Thisis
the serializer used by gpdf's new JSON representation.

* Add new QPDFObjectHandle::Matrix class along with afew convenience methods for dealing with six-
element numerical arrays as matrices.

¢ Add new method QPDFObjectHandle: :wraplnArray, which returns the object itself if it is an array, or an
array containing the object otherwise. Thisis a common construct in PDF. This method prevents you from
having to explicitly test whether something is a single element or an array.

 Build Improvements

« Itisnolonger necessary to run autogen.sh to build from a pristine checkout. Automatically generated files
are now committed so that it is possibleto build on platformswithout autoconf directly from aclean checkout
of the repository. The configure script detects if the files are out of date when it also determines that the
tools are present to regenerate them.

« Pull requests and the master branch are now built automatically in Azure Pipelines [https://dev.azure.com/
gpdf/qpdf/_build], which is free for open source projects. The build includes Linux, mac, Windows 32-bit
and 64-bit with mingw and MSV C, and an Applmage build. Official gpdf releases are now built with Azure
Pipelines.

» Notesfor Packagers

< A new section has been added to the documentation with notes for packagers. Please see Section 2.4, “Notes
for Packagers’, page 5.

« Thegpdf detects out-of-date automatically generated files. If your packaging system automatically refreshes
libtool or autoconf files, it could cause this check to fail. To avoid this problem, pass --disable-check-
autofilesto configure.

 If you would like to have gpdf completion enabled automatically, you can install completion files in the
distribution’s default location. Y ou can find sample completion files to install in the completions directory.

8.2.1: August 18, 2018
» Command-line Enhancements

* Add--keep-files-open=[yn] to override default determination of whether to keep files open when merging.
Please see the discussion of --keep-files-open in Section 3.3, “Basic Options’, page 7 for additional details.

8.2.0: August 16, 2018

¢ Command-line Enhancements

65

https://dev.azure.com/qpdf/qpdf/_build
https://dev.azure.com/qpdf/qpdf/_build
https://dev.azure.com/qpdf/qpdf/_build

Release Notes

* Add --no-warn option to suppress issuing warning messages. If there are any conditions that would have

caused warnings to be issued, the exit statusis still 3.

» Bug Fixes and Optimizations

Performance fix: optimize page merging operation to avoid unnecessary open/close calls on files being
merged. This solves a dramatic slow-down that was observed when merging certain types of files.

Optimize how memory was used for the TIFF predictor, drastically improving performance and memory
usage for files containing high-resolution images compressed with Flate using the TIFF predictor.

Bug fix: end of line characters were not properly handled inside strings in some cases.

Bug fix: using --progr ess on very small files could cause an infinite loop.

* APl enhancements

Add new class QPDFSystemError, derived from std::runtime_error, which is now thrown by
QUitil::throw_system error. This enablesthetriggering errno value to be retrieved.

Add ClosedFilelnputSour ce: : stayOpen method, enabling a ClosedFilelnputSource to stay open during
manually indicated periods of high activity, thus reducing the overhead of frequent open/close operations.

* Build Changes

For the mingw builds, change the name of the DLL import library from libgpdf.a to libgpdf.dil.a to more
accurately reflect that it is an import library rather than a static library. This potentially clears the way for
supporting a static library in the future, though presently, the gpdf Windows build only builds the DLL and
executables.

8.1.0: June 23, 2018

* Usability Improvements

When splitting files, gpdf detects fonts and images that the document metadata claims are referenced from a
page but are not actually referenced and omits them from the output file. This change can cause a significant
reduction in the size of split PDF files for files created by some software packages. In some cases, it can
also make page splitting slower. Prior versions of gpdf would believe the document metadata and sometimes
include al theimages from all the other pages even though the pages were no longer present. In the unlikely
event that the old behavior should be desired, or if you have a case where page splitting is very sow, the
old behavior (and speed) can be enabled by specifying --preser ve-unr efer enced-r esour ces. For additional
details, please see Section 3.9, “Advanced Transformation Options’, page 19.

When merging multiple PDF files, gpdf no longer leaves all the files open. This makes it possible to merge
numbers of files that may exceed the operating system's limit for the maximum number of open files.

The --rotate option's syntax has been extended to make the page range optional. If you specify --
rotate=angl e without specifying a page range, the rotation will be applied to all pages. This can be
especially useful for adjusting a PDF created from a multi-page document that was scanned upside down.

When merging multiple files, the --ver bose option now prints information about each file as it operates on
that file.

When the --progress option is specified, gpdf will print a running indicator of its best guess at how far
through the writing process it is. Note that, as with al progress meters, it's an approximation. This option

66

Release Notes

isimplemented in away that makes it useful for software that uses the gpdf library; see APl Enhancements
below.

» Bug Fixes

Properly decrypt files that use revision 3 of the standard security handler but use 40 bit keys (even though
revision 3 supports 128-bit keys).

Limit depth of nested data structures to prevent crashes from certain types of malformed (malicious) PDFs.

In “newline before endstream” mode, insert the required extra newline before the endst r eamat the end
of object streams. This one case was previously omitted.

» APl Enhancements

Thefirst round of higher level “helper” interfaces has been introduced. These are designed to provide amore
convenient way of interacting with certain document features than using QPDFObjectHandle directly. For
details on helpers, see Section 7.3, “Helper Classes’, page 36. Specific additional interfaces are described
below.

Add two new document helper classes: QPDFPageDocumentHelper for working with pages, and
QPDFAcroFormDocumentHelper for working with interactive forms. No old methods have been
removed, but QPDFPageDocumentHelper is now the preferred way to perform operations on pages
rather than calling the old methods in QPDFObjectHandle and QPDF directly. Comments in the header
files direct you to the new interfaces. Please see the header files and Changel.og for additional details.

Add three new object helper class: QPDFPageObjectHelper for pages, QPDFFormFieldObjectHelper
for interactiveformfields, and QPDFAnnotationObjectHelper for annotations. All threeclassesarefairly
sparse at the moment, but they have some useful, basic functionality.

A new example program examples/pdf-set-form-values.cc has been added that illustrates use of the new
document and object helpers.

The method QPDFWriter::register ProgressReporter has been added. This method allows you to register a
function that is called by QPDFWriter to update your idea of the percentageit thinksit isthrough writing its
output. Client programs can use thisto implement reasonably accurate progress meters. The gpdf command
line tool uses thisto implement its --pr ogr ess option.

New methods QPDFObjectHandle: : newUnicodeString and QPDFObject: : unpar seBinary have been added
to alow for more convenient creation of strings that are explicitly encoded using big-endian UTF-16. This
is useful for creating strings that appear outside of content streams, such as labels, form fields, outlines,
document metadata, etc.

A new classQPDFObjectHandle::Rectangle hasbeen added to ease working with PDF rectangles, which
arejust arrays of four numeric values.

8.0.2: March 6, 2018

» When aloopisdetected whilefollowing crossreference streamsor tabl es, treat thisas damageinstead of silently
ignoring the previous table. This prevents loss of otherwise recoverable datain some damaged files.

* Properly handle pages with no contents.

8.0.1: March 4, 2018

* Disregard data check errors when uncompressing/ FI at eDecode streams. Thisis consistent with most other
PDF readers and allows gpdf to recover data from another class of malformed PDF files.

67

Release Notes

» On the command line when specifying page ranges, support preceding a page number by “r” to indicate that
it should be counted from the end. For example, the range r 3- r 1 would indicate the last three pages of a
document.

8.0.0: February 25, 2018
 Packaging and Distribution Changes

* QPDF is now distributed as an Applmage [https://appimage.org/] in addition to all the other ways it is
distributed. The Appl mage can be found in the download areawith the other packages. Thanksto Kurt Pfeifle
and Simon Peter for their contributions.

* Bug Fixes

* QPDFObjectHandle::getUTF8Val now properly treats non-Unicode strings as encoded with PDF Doc
Encoding.

« Improvements to handling of objectsin PDF filesthat are not of the expected type. In most cases, gpdf will
be ableto warn for such cases rather than fail with an exception. Previous versions of gpdf would sometimes
fail with errors such as “operation for dictionary object attempted on object of wrong type”. This situation
should be mostly or entirely eliminated now.

» Enhancements to the qpdf Command-line Tool. All new options listed here are documented in more detail in
Chapter 3, Running QPDF, page 6.

» Theoption --linearize-passl=f i | e has been added for debugging gpdf's linearization code.

« The option --coalesce-contents can be used to combine content streams of a page whose contents are an
array of streamsinto a single stream.

» API Enhancements. All new API calls are documented in their respective classes header files. There are no
non-compatible changes to the API.

» Add function gpdf_check_pdf to the C API. This function does basic checking that is a subset of what gpdf
--check performs.

« Magjor enhancements to the lexical layer of gpdf. For a complete list of enhancements, please refer to the
Changelog file. Most of the changes result in improvements to qpdf's ability handle erroneous files. It is
also possible for programs to handle whitespace, comments, and inline images as tokens.

« New APl for working with PDF content streams a a lexicd level. The new class
QPDFObjectHandle:: TokenFilter allows the developer to provide token handlers. Token filters can
be used with several different methods in QPDFObjectHandle as well as with a lower-level interface.
See comments in QPDFObjectHandle.hh as well as the new examples examples/pdf-filter-tokens.cc and
examples/pdf-count-strings.cc for details.

7.1.1: February 4, 2018
» Bug fix: fileswhose /ID fields were other than 16 bytes long can now be properly linearized
» A few compile and link issues have been corrected for some platforms.

7.1.0: January 14, 2018

» PDF files contain streams that may be compressed with various compression agorithms which, in some cases,
may be enhanced by various predictor functions. Previously only the PNG up predictor was supported. In this

68

https://appimage.org/
https://appimage.org/

Release Notes

version, al the PNG predictors as well as the TIFF predictor are supported. This increases the range of files
that gpdf is able to handle.

* QPDF now allowsaraw encryption key to be specified in place of apassword when opening encrypted files, and
will optionally display the encryption key used by afile. Thisisanon-standard operation, but it can be useful in
certain situations. Please see the discussion of --passwor d-is-hex-key in Section 3.3, “Basic Options’, page 7
or the comments around QPDF:: setPasswordlsHexKey in QPDF.hh for additional details.

» Bug fix: numbers ending with atrailing decimal point are now properly recognized as numbers.

 Bug fix: when building gpdf from source on some platforms (especially MacOS), the build could get confused
by older versions of gpdf installed on the system. This has been corrected.

7.0.0: September 15, 2017

» Packaging and Distribution Changes

QPDF's primary license is now version 2.0 of the Apache License [http://www.apache.org/licenses/
LICENSE-2.0] rather than version 2.0 of the Artistic License. You may still, at your option, consider qpdf
to be licensed with version 2.0 of the Artistic license.

QPDF no longer has a dependency on the PCRE (Perl-Compatible Regular Expression) library. QPDF now
has an added dependency on the JPEG library.

* Bug Fixes

This release contains many bug fixes for various infinite loops, memory leaks, and other memory errors that
could be encountered with specialy crafted or otherwise erroneous PDF files.

¢ New Features

L]

QPDF now supports reading and writing streams encoded with JPEG or RunLength encoding. Library
API enhancements and command-line options have been added to control this behavior. See command-
line options --compress-streams and --decode-level and methods QPDFWriter:: setCompressStreams and
QPDFWriter::setDecodelevel.

QPDF is much better at recovering from broken files. In most cases, gpdf will skip invalid objects and will
preserve broken stream data by not attempting to filter broken streams. QPDF is now able to recover or at
least not crash on dozens of broken test files | have received over the past few years.

Page rotation is now supported and accessible from both the library and the command line.

QPDFWriter supports writing files in a way that preserves PCLm compliance in support of driverless
printing. Thisis very specialized and is only useful to applications that already know how to create PCLm
files.

» Enhancements to the qpdf Command-line Tool. All new options listed here are documented in more detail in
Chapter 3, Running QPDF, page 6.

Command-line arguments can now be read from files or standard input using @i | e or @ syntax. Please
see Section 3.1, “Basic Invocation”, page 6.

--rotate: request page rotation

--newline-befor e-endstream: ensure that a newline appears before every endst r eamkeyword in thefile;
used to prevent gpdf from breaking PDF/A compliance on aready compliant files.

--preserve-unr eferenced: preserve unreferenced objectsin the input PDF

69

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Release Notes

» --split-pages: break output into chunks with fixed numbers of pages
« --verbose: print the name of each output file that is created

e --compress-streams and --decode-level replace --stream-data for improving granularity of controlling
compression and decompression of stream data. The --str eam-data option will remain available.

* When running gpdf --check with other options, checks are aways run first. This enables gpdf to perform
its full recovery logic before outputting other information. This can be especially useful when manually
recovering broken files, looking at qpdf's regenerated cross reference table, or other similar operations.

« Process --pages earlier so that other options like --show-pages or --split-pages can operate on the file after
page splitting/merging has occurred.

API Changes. All new API calls are documented in their respective classes' header files.
* QPDFObjectHandle::rotatePage: apply rotation to a page object
* QPDFWriter::setNewlineBeforeEndstream: force newline to appear before endst r eam

* QPDFWriter::setPreserveUnreferencedObjects: preserve unreferenced objects that appear in the input PDF.
The default behavior isto discard them.

* New Pipeline types PI_RunLength and PI_DCT are available for developers who wish to produce or
consume RunLength or DCT stream data directly. The examples/pdf-create.cc exampleillustrates their use.

o QPDFWriter::setCompressreams and QPDFWriter::setDecodeLevel methods control handling of
different types of stream compression.

« Add new C AP functions gpdf_set_compress_streams, gpdf_set_decode_level,
gpdf_set_preserve_unreferenced_objects, and gpdf_set newline_before_endstream corresponding to the
new QPDFWriter methods.

6.0.0: November 10, 2015

Implement --deterministic-id command-line option and QPDFWriter::setDeterministiclD as well as C AP
function gpdf_set_deterministic_ID for generating adeterministic 1D for non-encrypted files. When this option
is selected, the ID of the file depends on the contents of the output file, and not on transient items such as the
timestamp or output file name.

Make gpdf more tolerant of files whose xref table entries are not the correct length.

5.1.3: May 24, 2015

Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objectsin
them.

Bug fix: gpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

Fix afew errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the Changel og for details.

Properly handle pages that have no contents at all. There were many cases in which gpdf handled this fine, but
afew methods blindly obtained page contents with handling the possibility that there were no contents.

Make gpdf more robust for afew more kinds of problems that may occur in invalid PDF files.

70

Release Notes

5.1.2: June 7, 2014

» Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See Changel.og for details. The odds of getting hit by this are very low, though one person did.

» Bug fix: gpdf would fail to write files that had streams with decode parameters referencing other streams.

» New example program: pdf-split-pages: efficiently split PDF filesinto individual pages. The example program
does this more efficiently than using qpdf --pagesto do it.

» Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the rel ease binaries.

5.1.1: January 14, 2014

» Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

» Added runtime option (QUIil:: setRandomDataProvider) to supply your own random data provider. Y ou can
use thisif you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

* Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. Thisincreases the disk space required by the image comparison tests, which
are off by default anyway.

* Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

» Beableto handle broken files that end the xref table header with a space instead of a newline.
5.0.1: October 18, 2013

e Thanksto adetailed review by Florian Weimer and the Red Hat Product Security Team, thisrelease includes a
number of non-user-visible security hardening changes. Please see the Changel og filein the sourcedistribution
for the complete list.

 When available, operating system-specific secure random number generation is used for generating
initialization vectors and other random values used during encryption or file creation. For the Windows build,
thisresultsin an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecur e-random option to ./configure.

» The gpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. gpdf, per the spec, has always ignored this flag, but it previously
did so silently. Thiswarning isissued only by the command-line tool, not by the library. Thelibrary's handling
of thisflag is unchanged.

5.0.0: July 10, 2013

» Bug fix: previous versions of gpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changesto the public API.

* Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't
realisticaly be called anywhere else. See Changel og for details.

* New QPDFObj Gen classadded to represent an object | D/generation pair. QPDFObjectHandle:: getObjGen() is
now preferred over QPDFObjectHandle: : getObjectI D() and QPDFObjectHandle: : getGeneration() asit makes

71

Release Notes

it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFODbjectHandle.hh for additional notes.

* Add --show-npages command-line option to the gpdf command to show the number of pagesin afile.

» Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be al the pagesin thefile.

 Various enhancements were made to support different types of broken files or broken readers. Details can be
found in Changelog.

4.1.0: April 14, 2013

* Noteto peopleincluding gpdf in distributions: the .1a files generated by libtool are now installed by gpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

* Magjor enhancement: APl enhancements have been made to support parsing of content streams. This
enhancement includes the following changes:

¢ QPDFObjectHandle: : parseContentStream method parses objectsin a content stream and calls handlersin a
callback class. The example exampl es/pdf-par se-content.cc illustrates how this may be used.

¢ QPDFObj ect Handl e can now represent operators and inline images, object types that may only appear
in content streams.

« Method QPDFObjectHandle:: get TypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle:: getTypeName() returns a text string describing the name of
the type of a QPDFObj ect Handl e object. These methods can be used for more efficient parsing and
debugging/diagnostic messages.

 gpdf --check now parsesall pages content streamsin addition to doing other checks. Whilethere are still many
types of errors that cannot be detected, syntactic errorsin content streams will now be reported.

» Minor compilation enhancements have been madetofacilitate easier for support for abroader range of compilers
and compiler versions.

< Warning flags have been moved into a separate variable in autoconf.mk
e The configure flag --enable-werror work for Microsoft compilers
« All MSVC CRT security warnings have been resolved.

e All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
whereinteger type coercion occurs have been scrutinized. A new casting policy has been documented in the
manual. Thisis of concern mainly to people porting gpdf to new platforms or compilers. It is not visible to
programmers writing code that uses the library

< Some internal limits have been removed in code that converts numbers to strings. Thisis largely invisible
to users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-
windows.md in the source distribution if you think this may affect you. The copy of the DLL distributed with
gpdf's binary distribution is not affected by this problem.

e The RPM spec file previoudly included with gpdf has been removed. This is because virtually all Linux
distributions include gpdf now that it is a dependency of CUPS filters.

72

Release Notes

» A few bug fixes are included:

< Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
gpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
valuesfor certain files.

 Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

* The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

Fix detection of binary attachmentsin test suite to avoid false test failures on some platforms.

Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme
specified in 1SO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, suchfilesexist“in
the wild,” so support for this scheme is still useful. New methods QPDFWriter:: setR6ENcryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter:: setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
aswell.

Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7,
corresponding to I1SO 32000, Adobe adds new functionality by increasing the extension level rather
than increasing the version. This support includes addition of the QPDF::getExtensionLevel method for
retrieving the document's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for specifying
forced and minimum versions on the command line as described in Section 3.9, “Advanced Transformation
Options’, page 19. Corresponding functions have been added to the C APl aswell.

Minor fixes to prevent gpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent gpdf from needlessly rejecting or complaining about such objects.

Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processinputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for gpdf in other programming languages that have their own /O systems,
€etc.

Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, al the non-compatible API changes in this version were to parts of the APl that would likely never

73

Release Notes

be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problemsin parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changeswill not require breaking backward compatibility.

Added additional parameters to compute data key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

Removed the method flattenScal ar References. This method was previously used prior to writing anew PDF
file, but it has the undesired side effect of causing gpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause gpdf to reject files
that would be accepted by virtually al other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force al streamsin thefile to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report fal se positive. The --check option now causes gpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of afilethat any ordinary viewer would check.

Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying thetrailer rather than modifying the original QPDF object. (Note
that gpdf never modifiesthe original fileitself.)

» Allow the PDF header to appear anywhere in the first 1024 bytes of thefile. Thisis consistent with what other
readers do.

» Fixthepkg-configfilestolist zlib and pcrein Requires.privateto better support static linking using pkg-config.

3.0.2: September 6, 2012

* Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setSaticlD, which
made it pretty much useless. This has been fixed.

* New API cal QPDFWriter::setExtraHeader Text inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

3.0.1: August 11, 2012

e Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

» Bugfix: if an object stream ended with a scalar object not followed by space, gpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

» Acknowledgment: | would like to express gratitude for the contributions of Tobias Hoff mann toward therelease
of gpdf version 3.0. Heisresponsiblefor most of theimplementation and design of the new API for manipulating

74

Release Notes

pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon asit did, if at all.

Non-compatible APl change: The version of QPDFObjectHandle::replaceSreamData that uses a
StreamDataProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to
3.0, page 81 for an explanation. While care is taken to avoid non-compatible APl changes in general, an
exception was made this time because the new interface offers an opportunity to significantly simplify calling
code.

Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-hit platforms as long as the compiler and underlying platforms support it.

Support for page selection (splitting and merging PDF files) has been added to the gpdf command-line tool.
See Section 3.5, “Page Selection Options’, page 14.

Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.3, “Basic Options’, page 7.

New methods have been added to the QPDF object for adding and removing pages. See Section 7.8, “Adding
and Removing Pages’, page 40.

New methods have been added to the QPDF object for copying objects from other PDF files. See Section 7.10,
“Copying Objects From Other PDF Files’, page 41

A new method QPDFObjectHandle:: parse has been added for constructing QPDFObjectHandle objects
from a string description.

Methods have been added to QPDFWriter to alow writing to an already open stdio FI LE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
aready open stdio FI LE* . This makesit possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

The QPDF::emptyPDF can be used to alow creation of PDF files from scratch. The example exampl es/pdf-
create.cc illustrates how it can be used.

Several methods to take PointerHolder<Buffer> can now also accept st d: : st ri ng arguments.

Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangelLog for afull list.

When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-ver sion-script to ./configure.

Thefile libgpdf.pc is now installed to support pkg-config.

Image comparison tests are off by default now since they are not needed to verify a correct build or port of
gpdf. They are needed only when changing the actual PDF output generated by gpdf. Y ou should enable them
if you are making deep changes to qpdf itself. See README.md for details.

Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README.md for details.

When gpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/gtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configur e to restore the old behavior.

75

Release Notes

2.3.1: December 28, 2011
* Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.
» Made afew minor documentation fixes.
» Add workaround for abug that appears in some versions of ghostscript to the test suite
» Fix minor build issue for Visual C++ 2010.
2.3.0: August 11, 2011

» Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older gpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

» Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. Y ou may then use QPDFWriter::getBuffer to retrieve the memory buffer.

* Add new API call QPDF::replaceObject for replacing objects by object ID
« Add new API call QPDF::swapObjects for swapping two objects by object ID

» Add QPDFObjectHandle: :getDictAsMap and QPDFObjectHandle:: getArrayAsVector to alow retrieval of
dictionary objects as maps and array objects as vectors.

* Add functions gpdf_get_info_key and gpdf_set_info_key to the C API for manipulating string fields of the
document's/ | nf o dictionary.

» Add functions gpdf_init_write_memory, gpdf_get_buffer_length, and gpdf_get_buffer to the C API for writing
PDF filesto a memory buffer instead of afile.

2.2.4: June 25, 2011
 Fix installation and compilation issues; no functionality changes.

2.2.3: April 30, 2011
» Handle some damaged streams with incorrect characters following the stream keyword.
* Improve handling of inline images when normalizing content streams.

» Enhance error recovery to properly handle files that use object O as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

» Add new function gpdf_read_memory to the C API to call QPDF::processMemoryFile. Thiswas an omission
in gpdf 2.2.1.

2.2.1: October 1, 2010

* Add new method QPDF:: setOutputStreams to replace std: : cout and std: : cerr with other streamsfor generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does

76

Release Notes

not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
set Suppr essWar ni ngs(true) iscalled.

Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in afile on disk.

Giveawarning but otherwiseignore empty PDF objects by treating them asnull. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

Implement miscellaneous enhancementsto PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

Add new methodsto QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streamsto a page. This method makesit possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

Add new method in QPDFObjectHandle: getRawStreamData, which returnsthe raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added
interfaces.

Fix amemory leak that would cause loss of afew bytesfor every object involved in acycle of object references.
Thanks to Jian Mafor calling my attention to the leak.

2.1.5: April 25, 2010

Remove restriction of fileidentifier stringsto 16 bytes. This unnecessary restriction was preventing gpdf from
being ableto encrypt or decrypt fileswith identifier stringsthat were not exactly 16 byteslong. The specification
imposes no such restriction.

2.1.4: April 18, 2010

Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that gpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read afile that qpdf thinksis okay.

2.1.3: March 27, 2010

Fix bug that could cause afailurewhen rewriting PDF filesthat contain object streamswith unreferenced objects
that in turn reference indirect scalars.

77

Release Notes

Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

This is the first version of gpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call gpdf functions
from non-C++ environments. | am very grateful to Zarko Gajic (http:/zarko-ggjic.iz.hr/) for tirelessly testing
numerous pre-release versions of this DLL and providing many excellent suggestions on improving the
interface.

For programming to the C interface, please see the header file qpdf/gpdf-c.h and the example examples/pdf-
linearize.c.

Zarko Gagjic has written a Delphi wrapper for gpdf, which can be downloaded from gpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as gpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://zarko-gajic.iz.hr/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample codeis provided.”

Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, gpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that | have not
been able to get very many files encrypted in thisway, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

Add additional methods to the QPDF aobject for querying the document's permissions. Although gpdf does
not enforce these permissions, it does make them available so that applications that use gpdf can enforce
permissions.

The --check option to gpdf has been extended to include some additional information.

There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 80.

2.0.6: May 3, 2009

Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of gpdf
would have rejected files with such streams.

78

http://zarko-gajic.iz.hr/
http://zarko-gajic.iz.hr/

Release Notes

2.0.5: March 10, 2009

* Improveerror handling in the LZW decoder, and fix asmall error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

* Include proper support for LZW streams encoded without the “ early code change” flag. Special thanksto Atom
Smasher who reported the problem and provided an input file compressed in thisway, which | did not previously
have.

» Implement some improvements to file recovery logic.
2.0.3: February 15, 2009

e Compile cleanly with gcc 4.4.

» Handle strings encoded as UTF-16BE properly.
2.0.2: June 30, 2008

» Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual gpdf source code itself for thisrelease.

2.0.1: May 6, 2008

» No changes in functionality or interface. This release includes fixes to the source code so that gpdf compiles
properly and passes its test suite on a broader range of platforms. See Changel.og in the source distribution
for details.

2.0: April 29, 2008

* First public release.

79

Appendix B. Upgrading from 2.0to 2.1

Although, asagenera rule, weliketo avoid introducing source-level incompatibilitiesin gpdf'sinterface, therewerea
few non-compatible changes madein this version. A considerable amount of source code that uses gpdf will probably
compilewithout any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

The QPDFEXxc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among thefieldsisanumeric error code that can hel p applicationsact differently on (asmall number
of) different error conditions. See QPDFEXxc.hh for details.

Warnings can be retrieved from gpdf as instances of QPDFEXc instead of strings.

The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily
intended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support / R=4 encryption.

The method QPDF:: getUser Password has been removed since it didn't do what people would think it did. There
are now two new methods. QPDF: : getPaddedUser Password and QPDF:: getTrimmedUser Password. Thefirst one
doeswhat the old QPDF: : getUser Password method used to do, which isto return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readabl e password string.

The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file gpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

80

Appendix C. Upgrading to 3.0

For the most part, the API for gpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

* The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
datano longer takes alength parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, gpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

» Many methodstakel ong | ong instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytesin size.

81

Appendix D. Upgrading to 4.0

While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. Inthe unlikely event that you should runinto trouble, please see the Changel og. See also Appendix A, Release
Notes, page 49 for a complete list of the non-compatible APl changes made in this version.

82

