
librrd(3) rrdtool librrd(3)

NAME
librrd − RRD library functions

DESCRIPTION
librrd contains most of the functionality in RRDTool. The command line utilities and language bindings

are often just wrappers around the code contained in librrd.

This manual page documents the librrd API.

NOTE: This document is a work in progress, and should be considered incomplete as long as this warning

persists. For more information about the librrd functions, always consult the source code.

CORE FUNCTIONS
rrd_dump_cb_r(char *filename, int opt_header, rrd_output_callback_t cb, void *user)

In some situations it is necessary to get the output of rrd_dump without writing it to a file or the

standard output. In such cases an application can ask rrd_dump_cb_r to call an user-defined function

each time there is output to be stored somewhere. This can be used, to e.g. directly feed an XML parser

with the dumped output or transfer the resulting string in memory.

The arguments for rrd_dump_cb_r are the same as for rrd_dump_opt_r except that the output

filename parameter is replaced by the user-defined callback function and an additional parameter for

the callback function that is passed untouched, i.e. to store information about the callback state needed

for the user-defined callback to function properly.

Recent versions of rrd_dump_opt_r internally use this callback mechanism to write their output to

the file provided by the user.

size_t rrd_dump_opt_cb_fileout(

const void *data,

size_t len,

void *user)

{

return fwrite(data, 1, len, (FILE *)user);

}

The associated call for rrd_dump_cb_r looks like

res = rrd_dump_cb_r(filename, opt_header,

rrd_dump_opt_cb_fileout, (void *)out_file);

where the last parameter specifies the file handle rrd_dump_opt_cb_fileout should write to. There’s

no specific condition for the callback to detect when it is called for the first time, nor for the last time.

If you require this for initialization and cleanup you should do those tasks before and after calling

rrd_dump_cr_r respectively.

rrd_fetch_cb_register(rrd_fetch_cb_t c)

If your data does not reside in rrd files, but you would like to draw charts using the rrd_graph

functionality, you can supply your own rrd_fetch function and register it using the

rrd_fetch_cb_register function.

The argument signature and api must be the same of the callback function must be aequivalent to the

on of rrd_fetch_fn in rrd_fetch.c.

To activate the callback function you can use the pseudo filename cb//free_form_text.

Note that rrdtool graph will not ask the same rrd for data twice. It determines this by building a key out

of the values supplied to the fetch function. If the values are the same, the previous answer will be

used.

UTILITY FUNCTIONS
rrd_random()

Generates random numbers just like random(). This further ensures that the random number generator

is seeded exactly once per process.

1.5.999 2016-11-03 1

librrd(3) rrdtool librrd(3)

rrd_strtodbl

an rrd aware string to double converter which sets rrd_error in if there is a problem and uses the return

code exclusively for conversion status reporting.

rrd_strtod

works like normal strtod, but it is locale independent (and thread safe)

rrd_snprintf

works like normal snprintf but it is locale independent (and thread safe)

rrd_add_ptr(void ***dest, size_t *dest_size, void *src)

Dynamically resize the array pointed to by dest. dest_size is a pointer to the current size of

dest. Upon successful realloc(), the dest_size is incremented by 1 and the src pointer is stored

at the end of the new dest. Returns 1 on success, 0 on failure.

type **arr = NULL;

type *elem = "whatever";

size_t arr_size = 0;

if (!rrd_add_ptr(&arr, &arr_size, elem))

handle_failure();

rrd_add_ptr_chunk(void ***dest, size_t *dest_size, void *src, size_t *alloc, size_t chunk)

Like rrd_add_ptr, except the destination is allocated in chunks of chunk. alloc points to the

number of entries allocated, whereas dest_size points to the number of valid pointers. If more

pointers are needed, chunk pointers are allocated and alloc is increased accordingly. alloc must

be >= dest_size.

This method improves performance on hosts with expensive realloc().

rrd_add_strdup(char ***dest, size_t *dest_size, char *src)

Like rrd_add_ptr, except adds a strdup of the source string.

char **arr = NULL;

size_t arr_size = NULL;

char *str = "example text";

if (!rrd_add_strdup(&arr, &arr_size, str))

handle_failure();

rrd_add_strdup_chunk(char ***dest, size_t *dest_size, char *src, size_t *alloc, size_t chunk)

Like rrd_add_strdup, except the destination is allocated in chunks of chunk. alloc points to

the number of entries allocated, whereas dest_size points to the number of valid pointers. If more

pointers are needed, chunk pointers are allocated and alloc is increased accordingly. alloc must

be >= dest_size.

rrd_free_ptrs(void ***src, size_t *cnt)

Free an array of pointers allocated by rrd_add_ptr or rrd_add_strdup. Also frees the array

pointer itself. On return, the source pointer will be NULL and the count will be zero.

/* created as above */

rrd_free_ptrs(&arr, &arr_size);

/* here, arr == NULL && arr_size == 0 */

rrd_mkdir_p(const char *pathname, mode_t mode)

Create the directory named pathname including all of its parent directories (similar to mkdir −p

on the command line − see mkdir (1) for more information). The argument mode specifies the

permissions to use. It is modified by the process’s umask. See mkdir (2) for more details.

The function returns 0 on success, a negative value else. In case of an error, errno is set accordingly.

Aside from the errors documented in mkdir (2), the function may fail with the following errors:

1.5.999 2016-11-03 2

librrd(3) rrdtool librrd(3)

EINVAL

pathname is NULL or the empty string.

ENOMEM

Insufficient memory was available.

any error returned by stat (2)

In contrast to mkdir (2), the function does not fail if pathname already exists and is a directory.

rrd_scaled_duration (const char * token, unsigned long divisor, unsigned long * valuep)

Parse a token in a context where it contains a count (of seconds or PDP instances), or a duration that

can be converted to a count by representing the duration in seconds and dividing by some scaling

factor. For example, if a user would natively express a 3 day archive of samples collected every 2

minutes, the sample interval can be represented by 2m instead of 120, and the archive duration by 3d

(to be divided by 120) instead of 2160 (3*24*60*60 / 120). See more examples in ‘‘STEP,

HEARTBEAT, and Rows As Durations’’ in rrdcreate.

token must be a number with an optional single-character suffix encoding the scaling factor:

s indicates seconds

m indicates minutes. The value is multiplied by 60.

h indicates hours. The value is multiplied by 3600 (or 60m).

d indicates days. The value is multiplied by 86400 (or 24h).

w indicates weeks. The value is multiplied by 604800 (or 7d).

M indicates months. The value is multiplied by 2678400 (or 31d). (Note this factor accommodates

the maximum number of days in a month.)

y indicates years. The value is multiplied by 31622400 (or 366d). (Note this factor

accommodates leap years.)

divisor is a positive value representing the duration in seconds of an interval that the desired result

counts.

valuep is a pointer to where the decoded value will be stored if the conversion is successful.

The initial characters of token must be the base−10 representation of a positive integer, or the

conversion fails.

If the remainder token is empty (no suffix), it is a count and no scaling is performed.

If token has one of the suffixes above, the count is multiplied to convert it to a duration in seconds.

The resulting number of seconds is divided by divisor to produce a count of intervals each of

duration divisor seconds. If division would produce a remainder (e.g., 5m (300 seconds) divided

by 90s), the conversion is invalid.

If token has unrecognized trailing characters the conversion fails.

The function returns a null pointer if the conversion was successful and valuep has been updated to

the scaled value. On failure, it returns a text diagnostic suitable for use in user error messages.

CLIENT FUNCTIONS
The following functions are used to connected to an rrdcached instance, either via a unix or inet address,

and create, update, or gather statistics about a specified RRD database file.

There are two different interfaces: The rrd_client_ family of functions operate on a user-provided client

object (rrd_client_t) and support multiple concurrent connections to rrdcache instances. The simpler rrdc_

family of functions handles connections transparently but can only be used for one connection at a time.

All of the following functions and data types are specified in the rrd_client.h header file.

1.5.999 2016-11-03 3

librrd(3) rrdtool librrd(3)

rrd_client_new(const char *daemon_addr)

Create a new client connection object. If specified, connect to the daemon at daemon_addr. The

connection can later be changed by calling rrd_client_connect.

rrd_client_destroy(rrd_client_t *client)

Close a client connection and destroy the object by freeing all dynamically allocated memory. After

calling this function, client can no longer be used.

rrd_client_connect(rrd_client_t *client, const char *daemon_addr)

rrdc_connect(const char *daemon_addr)

Connect to a running rrdcached instance, specified via daemon_addr. Any previous connection will

be closed. If daemon_addr is NULL, it defaults to the value of the ENV_RRDCACHED_ADDRESS

environment address.

rrd_client_is_connected(rrd_client_t *client)

Return a boolean int if the client is connected to the server.

rrd_client_address(rrd_client_t *client)

Returns the server address belonging to the current connection.

rrdc_is_connected(const char *daemon_addr)

Return a boolean int to determine if the client is connected to the rrdcache daemon specified by the

daemon_addr parameter.

rrd_client_ping(rrd_client_t *client)

rrdc_ping

Check the client connection by pinging the remote side.

rrdc_is_any_connected

Return a boolean int if any daemon connections are connected.

rrd_client_disconnect(rrd_client_t *client)

rrdc_disconnect

Disconnect gracefully from the present daemon connection.

rrd_client_update(rrd_client_t *client, const char *filename, int values_num, const char * const

*values)

rrdc_update(const char *filename, int values_num, const char * const *values)

Update the RRD filename via the rrdcached. Where values_num is the number of values to

update and values are the new values to add.

rrd_client_info(rrd_client_t *client, const char *filename)

rrdc_info(const char *filename)

Grab rrd info of the RRD filename from the connected cache daemon. This function returns an

rrd_info_t structure of the following format:

typedef struct rrd_blob_t {

unsigned long size; /* size of the blob */

unsigned char *ptr; /* pointer */

} rrd_blob_t;

typedef enum rrd_info_type { RD_I_VAL = 0,

RD_I_CNT,

RD_I_STR,

RD_I_INT,

RD_I_BLO

} rrd_info_type_t;

typedef union rrd_infoval {

unsigned long u_cnt;

rrd_value_t u_val;

1.5.999 2016-11-03 4

librrd(3) rrdtool librrd(3)

char *u_str;

int u_int;

rrd_blob_t u_blo;

} rrd_infoval_t;

typedef struct rrd_info_t {

char *key;

rrd_info_type_t type;

rrd_infoval_t value;

struct rrd_info_t *next;

} rrd_info_t;

rrd_client_last(rrd_client_t *client, const char *filename)

rrdc_last(const char *filename)

Grab the unix epoch of the last time RRD filename was updated.

rrd_client_first(rrd_client_t *client, const char *filename, int rraindex)

rrdc_first(const char *filename, int rraindex)

Get the first value of the first sample of the RRD filename, of the rraindex RRA (Round Robin

Archive) index number. The RRA index number can be determined by pulling the rrd_info_t off the

RRD.

rrd_client_create(rrd_client_t *client, const char *filename, unsigned long pdp_step, time_t last_up,

int no_overwrite, int argc, const char **argv)

rrdc_create(const char *filename, unsigned long pdp_step, time_t last_up, int no_overwrite, int argc,

const char **argv)

Create RRD database of path filename. The RRD will have a step size of pfp_step, the unix

epoch timestamp to start collecting data from. The number of data sources and RRAs argc and the

definitions of the data sources and RRAs argv. Lastly whether or not to overwrite an existing RRD if

one is found with the same filename; no_overwrite.

rrdc_create_r2(rrd_client_t *client, const char *filename, unsigned long pdp_step, time_t last_up, int

no_overwrite, const char **sources, const char *template, int argc, const char **argv)

rrdc_create_r2(const char *filename, unsigned long pdp_step, time_t last_up, int no_overwrite, const

char **sources, const char *template, int argc, const char **argv)

Create an RRD database in the daemon. rrdc_create_r2 has the same parameters as rrdc_create with

two added parameters of; sources and template.

where template is the file path to a RRD file template, with, the form defined in rrdcreate(1),

The sources parameter defines series of file paths with data defined, to prefill the RRD with. See

rrdcreate(1) for more details.

rrd_client_flush(rrd_client_t *client, const char *filename)

rrdc_flush(const char *filename)

flush the currently RRD cached in the daemon specified via filename.

rrd_client_forget(rrd_client_t *client, const char *filename)

rrdc_forget(const char *filename)

Drop the cached data for the RRD file specified via filename.

rrdc_flush_if_daemon(const char *daemon_addr, const char *filename)

Flush the specified RRD given by filename only if the daemon daemon_addr is up and

connected.

rrd_client_fetch(rrd_client_t *client, const char *filename, const char *cf, time_t *ret_start, time_t

*ret_end, unsigned long *ret_step, unsigned long *ret_ds_num, char ***ret_ds_names, rrd_value_t

**ret_data)

1.5.999 2016-11-03 5

librrd(3) rrdtool librrd(3)

rrdc_fetch(const char *filename, const char *cf, time_t *ret_start, time_t *ret_end, unsigned long

*ret_step, unsigned long *ret_ds_num, char ***ret_ds_names, rrd_value_t **ret_data)

Perform a fetch operation on the specified RRD Database given be filename, where cf is the

consolidation function, ret_start is the start time given by unix epoch, ret_end is the endtime.

ret_step is the step size in seconds, ret_ds_num the number of data sources in the RRD,

ret_ds_names the names of the data sources, and a pointer to an rrd_value_t object to shlep the

data.

rrdc_stats_get(rrd_client_t *client, rrdc_stats_t **ret_stats)

rrdc_stats_get(rrdc_stats_t **ret_stats)

Get stats from the connected daemon, via a linked list of the following structure:

struct rrdc_stats_s {

const char *name;

uint16_t type;

#define RRDC_STATS_TYPE_GAUGE 0x0001

#define RRDC_STATS_TYPE_COUNTER 0x0002

uint16_t flags;

union {

uint64_t counter;

double gauge;

} value;

struct rrdc_stats_s *next;

};

typedef struct rrdc_stats_s rrdc_stats_t;

rrdc_stats_free(rrdc_stats_t *ret_stats)

Free the stats struct allocated via rrdc_stats_get.

SEE ALSO

rrcached(1) rrdfetch(1) rrdinfo(1) rrdlast(1) rrdcreate(1) rrdupdate(1) rrdlast(1)

AUTHOR
RRD Contributors <rrd−developers@lists.oetiker.ch>

1.5.999 2016-11-03 6

