
RRDFETCH(1) rrdtool RRDFETCH(1)

NAME
rrdfetch − Fetch data from an RRD.

SYNOPSIS
rrdtool fetch filename CF [−−resolution|−r resolution] [−−start|−s start] [−−end|−e end]

[−−align−start|−a] [−−daemon|−d address]

DESCRIPTION
The fetch function is normally used internally by the graph function to get data from RRDs. fetch will

analyze the RRD and try to retrieve the data in the resolution requested. The data fetched is printed to

stdout. *UNKNOWN* data is often represented by the string ‘‘NaN’’ depending on your OS’s printf

function.

filename the name of the RRD you want to fetch the data from.

CF the consolidation function that is applied to the data you want to fetch

(AVERAGE,MIN,MAX,LAST)

−−resolution|−r resolution (default is the highest resolution)

the interval you want the values to have (seconds per value). An optional suffix may be used (e.g.

5m instead of 300 seconds). rrdfetch will try to match your request, but it will return data even

if no absolute match is possible. See ‘‘RESOLUTION INTERVAL’ ’.

−−start|−s start (default end−1day)

start of the time series. A time in seconds since epoch (1970−01−01) is required. Negative

numbers are relative to the current time. By default, one day worth of data will be fetched. See

also AT-STYLE TIME SPECIFICATION section for a detailed explanation on ways to specify the

start time.

−−end|−e end (default now)

the end of the time series in seconds since epoch. See also AT-STYLE TIME SPECIFICATION

section for a detailed explanation of how to specify the end time.

−−align−start|−a

Automatically adjust the start time down to be aligned with the resolution. The end-time is

adjusted by the same amount. This avoids the need for external calculations described in

RESOLUTION INTERVAL, though if a specific RRA is desired this will not ensure the start and end

fall within its bounds.

−−daemon|−d address

Address of the rrdcached daemon. If specified, a flush command is sent to the server before

reading the RRD files. This allows rrdtool to return fresh data even if the daemon is configured to

cache values for a long time. For a list of accepted formats, see the −l option in the rrdcached

manual.

rrdtool fetch −−daemon unix:/var/run/rrdcached.sock /var/lib/rrd/foo.rrd AVERAGE

Please note that due to thread-safety reasons, the time specified with −s and −e cannot use the

complex forms described in ‘‘AT-STYLE TIME SPECIFICATION’’. The only accepted arguments

are ‘‘simple integers’’. Positive values are interpreted as seconds since epoch, negative values

(and zero) are interpreted as relative to now. So ‘‘1272535035’’ refers to ‘‘09:57:15 (UCT), April

29th 2010’’ and ‘‘−3600’’ means ‘‘one hour ago’’.

RESOLUTION INTERVAL

In order to get RRDtool to fetch anything other than the finest resolution RRA both the start and end time

must be specified on boundaries that are multiples of the desired resolution. Consider the following

example:

1.5.999 2015-11-10 1

RRDFETCH(1) rrdtool RRDFETCH(1)

rrdtool create subdata.rrd −s 10 \

DS:ds0:GAUGE:5m:0:U \

RRA:AVERAGE:0.5:5m:300h \

RRA:AVERAGE:0.5:15m:300h \

RRA:AVERAGE:0.5:1h:50d \

RRA:MAX:0.5:1h:50d \

RRA:AVERAGE:0.5:1d:600d \

RRA:MAX:0.5:1d:600d

This RRD collects data every 10 seconds and stores its averages over 5 minutes, 15 minutes, 1 hour, and 1

day, as well as the maxima for 1 hour and 1 day.

Consider now that you want to fetch the 15 minute average data for the last hour. You might try

rrdtool fetch subdata.rrd AVERAGE −r 15m −s −1h

However, this will almost always result in a time series that is NOT in the 15 minute RRA. Therefore, the

highest resolution RRA, i.e. 5 minute averages, will be chosen which in this case is not what you want.

Hence, make sure that

1. both start and end time are a multiple of 900 (15m)

2. both start and end time are within the desired RRA

So, if time now is called ‘‘t’’, do

end time == int(t/900)*900,

start time == end time − 1hour,

resolution == 900.

Using the bash shell, this could look be:

TIME=$(date +%s)

RRDRES=900

rrdtool fetch subdata.rrd AVERAGE −r $RRDRES \

−e $(($TIME/$RRDRES*$RRDRES)) −s e−1h

Or in Perl:

perl −e '$ctime = time; $rrdres = 900; \

system "rrdtool fetch subdata.rrd AVERAGE \

−r $rrdres −e @{[int($ctime/$rrdres)*$rrdres]} −s e−1h"'

Or using the −−align−start flag:

rrdtool fetch subdata.rrd AVERAGE −a −r 15m −s −1h

AT -STYLE TIME SPECIFICATION

Apart from the traditional Seconds since epoch, RRDtool does also understand at-style time specification.

The specification is called ‘‘at-style’’ after the Unix command at (1) that has moderately complex ways to

specify time to run your job at a certain date and time. The at-style specification consists of two parts: the

TIME REFERENCE specification and the TIME OFFSET specification.

TIME REFERENCE SPECIFICATION

The time reference specification is used, well, to establish a reference moment in time (to which the time

offset is then applied to). When present, it should come first, when omitted, it defaults to now. On its own

part, time reference consists of a time-of-day reference (which should come first, if present) and a day

reference.

The time-of-day can be specified as HH:MM, HH.MM, or just HH. You can suffix it with am or pm or use

24−hours clock. Some special times of day are understood as well, including midnight (00:00), noon

(12:00) and British teatime (16:00).

The day can be specified as month-name day-of-the-month and optional a 2− or 4−digit year number (e.g.

March 8 1999). Alternatively, you can use day-of-week-name (e.g. Monday), or one of the words:

1.5.999 2015-11-10 2

RRDFETCH(1) rrdtool RRDFETCH(1)

yesterday, today, tomorrow. You can also specify the day as a full date in several numerical formats,

including MM/DD/[YY]YY, DD.MM.[YY]YY, or YYYYMMDD.

NOTE1: this is different from the original at (1) behavior, where a single-number date is interpreted as

MMDD[YY]YY.

NOTE2: if you specify the day in this way, the time-of-day is REQUIRED as well.

Finally, you can use the words now, start, end or epoch as your time reference. Now refers to the current

moment (and is also the default time reference). Start (end) can be used to specify a time relative to the

start (end) time for those tools that use these categories (rrdfetch, rrdgraph) and epoch indicates the *IX

epoch (*IX timestamp 0 = 1970−01−01 00:00:00 UTC). epoch is useful to disambiguate between a

timestamp value and some forms of abbreviated date/time specifications, because it allows one to use time

offset specifications using units, eg. epoch+19711205s unambiguously denotes timestamp 19711205 and

not 1971−12−05 00:00:00 UTC.

Month and day of the week names can be used in their naturally abbreviated form (e.g., Dec for December,

Sun for Sunday, etc.). The words now, start, end can be abbreviated as n, s, e.

TIME OFFSET SPECIFICATION

The time offset specification is used to add/subtract certain time intervals to/from the time reference

moment. It consists of a sign (+ or −) and an amount. The following time units can be used to specify the

amount: years, months, weeks, days, hours, minutes, or seconds. These units can be used in singular or

plural form, and abbreviated naturally or to a single letter (e.g. +3days, −1wk, −3y). Several time units can

be combined (e.g., −5mon1w2d) or concatenated (e.g., −5h45min = −5h−45min = −6h+15min =

−7h+1h30m−15min, etc.)

NOTE3: If you specify time offset in days, weeks, months, or years, you will end with the time offset that

may vary depending on your time reference, because all those time units have no single well defined time

interval value (1 year contains either 365 or 366 days, 1 month is 28 to 31 days long, and even 1 day may

be not equal to 24 hours twice a year, when DST-related clock adjustments take place). To cope with this,

when you use days, weeks, months, or years as your time offset units your time reference date is adjusted

accordingly without too much further effort to ensure anything about it (in the hope that mktime (3) will

take care of this later). This may lead to some surprising (or even inv alid!) results, e.g. ’May 31 −1month’

= ’Apr 31’ (meaningless) = ’May 1’ (after mktime (3) normalization); in the EET timezone ’3:30am Mar 29

1999 −1 day’ yields ’3:30am Mar 28 1999’ (Sunday) which is an invalid time/date combination (because of

3am −> 4am DST forward clock adjustment, see the below example).

In contrast, hours, minutes, and seconds are well defined time intervals, and these are guaranteed to always

produce time offsets exactly as specified (e.g. for EET timezone, ’8:00 Mar 27 1999 +2 days’ =

’8:00 Mar 29 1999’, but since there is 1−hour DST forward clock adjustment that occurs around

3:00 Mar 28 1999, the actual time interval between 8:00 Mar 27 1999 and 8:00 Mar 29 1999 equals 47

hours; on the other hand, ’8:00 Mar 27 1999 +48 hours’ = ’9:00 Mar 29 1999’, as expected)

NOTE4: The single-letter abbreviation for both months and minutes is m. To disambiguate them, the parser

tries to read your mind :) by applying the following two heuristics:

1. If m is used in context of (i.e. right after the) years, months, weeks, or days it is assumed to mean

months, while in the context of hours, minutes, and seconds it means minutes. (e.g., in −1y6m or

+3w1m m is interpreted as months, while in −3h20m or +5s2m m the parser decides for minutes).

2. Out of context (i.e. right after the + or − sign) the meaning of m is guessed from the number it directly

follows. Currently, if the number’s absolute value is below 25 it is assumed that m means months,

otherwise it is treated as minutes. (e.g., −25m == −25 minutes, while +24m == +24 months)

Final NOTES: Time specification is case-insensitive. Whitespace can be inserted freely or omitted

altogether. There are, however, cases when whitespace is required (e.g., ’midnight Thu’). In this case you

should either quote the whole phrase to prevent it from being taken apart by your shell or use ’_’

(underscore) or ’,’ (comma) which also count as whitespace (e.g., midnight_Thu or midnight,Thu).

1.5.999 2015-11-10 3

RRDFETCH(1) rrdtool RRDFETCH(1)

TIME SPECIFICATION EXAMPLES

Oct 12 — October 12 this year

−1month or −1m — current time of day, only a month before (may yield surprises, see NOTE3 above).

noon yesterday −3hours — yesterday morning; can also be specified as 9am−1day.

23:59 31.12.1999 — 1 minute to the year 2000.

12/31/99 11:59pm — 1 minute to the year 2000 for imperialists.

12am 01/01/01 — start of the new millennium

end−3weeks or e−3w — 3 weeks before end time (may be used as start time specification).

start+6hours or s+6h — 6 hours after start time (may be used as end time specification).

931225537 — 18:45 July 5th, 1999 (yes, seconds since 1970 are valid as well).

19970703 12:45 — 12:45 July 3th, 1997 (my favorite, and its even got an ISO number (8601)).

ENVIRONMENT VARIABLES
The following environment variables may be used to change the behavior of rrdtool fetch:

RRDCACHED_ADDRESS

If this environment variable is set it will have the same effect as specifying the −−daemon option on

the command line. If both are present, the command line argument takes precedence.

AUTHOR
Tobias Oetiker <tobi@oetiker.ch>

1.5.999 2015-11-10 4

