
RRDCREATE(1) rrdtool RRDCREATE(1)

NAME
rrdcreate − Set up a new Round Robin Database

SYNOPSIS
rrdtool create filename [−−start|−b start time] [−−step|−s step] [−−template|−t template-file]

[−−source|−r source-file] [−−no−overwrite|−O] [−−daemon|−d address] [DS:ds-name[=mapped-ds-

name[[source-index]]]:DST:dst arguments] [RRA:CF:cf arguments]

DESCRIPTION
The create function of RRDtool lets you set up new Round Robin Database (RRD) files. The file is created

at its final, full size and filled with *UNKNOWN* data, unless one or more source RRD files have been

specified and they hold suitable data to ‘‘pre-fill’’ the new RRD file.

filename

The name of the RRD you want to create. RRD files should end with the extension .rrd. Howev er, RRDtool

will accept any filename.

−−start|−b start time (default: now − 10s)

Specifies the time in seconds since 1970−01−01 UTC when the first value should be added to the RRD.

RRDtool will not accept any data timed before or at the time specified.

See also AT-STYLE TIME SPECIFICATION section in the rrdfetch documentation for other ways to specify

time.

If one or more source files is used to pre-fill the new RRD, the −−start option may be omitted. In that case,

the latest update time among all source files will be used as the last update time of the new RRD file,

effectively setting the start time.

−−step|−s step (default: 300 seconds)

Specifies the base interval in seconds with which data will be fed into the RRD. A scaling factor may be

present as a suffix to the integer; see ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

−−no−overwrite|−O

Do not clobber an existing file of the same name.

−−daemon|−d address

Address of the rrdcached daemon. For a list of accepted formats, see the −l option in the rrdcached manual.

rrdtool create −−daemon unix:/var/run/rrdcached.sock /var/lib/rrd/foo.rrd I<other options>

[−−template|−t template-file]

Specifies a template RRD file to take step, DS and RRA definitions from. This allows one to base the

structure of a new file on some existing file. The data of the template file is NOT used for pre-filling, but it is

possible to specify the same file as a source file (see below).

Additional DS and RRA definitions are permitted, and will be added to those taken from the template.

−−source|−r source-file

One or more source RRD files may be named on the command line. Data from these source files will be

used to prefill the created RRD file. The output file and one source file may refer to the same file name. This

will effectively replace the source file with the new RRD file. While there is the danger to loose the source

file because it gets replaced, there is no danger that the source and the new file may be ‘‘garbled’’ together

at any point in time, because the new file will always be created as a temporary file first and will only be

moved to its final destination once it has been written in its entirety.

Prefilling is done by matching up DS names, RRAs and consolidation functions and choosing the best

available data resolution when doing so. Prefilling may not be mathematically correct in all cases (eg. if

resolutions have to change due to changed stepping of the target RRD and old and new resolutions do not

match up with old/new bin boundaries in RRAs).

In other words: A best effort is made to preserve data during prefilling. Also, pre-filling of RRAs may only

be possible for certain kinds of DS types. Prefilling may also have strange effects on Holt-Winters

forecasting RRAs. In other words: there is no guarantee for data-correctness.

1.5.999 2015-11-10 1

RRDCREATE(1) rrdtool RRDCREATE(1)

When ‘‘pre-filling’’ a RRD file, the structure of the new file must be specified as usual using DS and RRA

specifications as outlined below. Data will be taken from source files based on DS names and types and in

the order the source files are specified in. Data sources with the same name from different source files will

be combined to form a new data source. Generally, for any point in time the new RRD file will cover after

its creation, data from only one source file will have been used for pre-filling. However, data from multiple

sources may be combined if it refers to different times or an earlier named source file holds unknown data

for a time where a later one holds known data.

If this automatic data selection is not desired, the DS syntax allows one to specify a mapping of target and

source data sources for prefilling. This syntax allows one to rename data sources and to restrict prefilling

for a DS to only use data from a single source file.

Prefilling currently only works reliably for RRAs using one of the classic consolidation functions, that is

one of: AVERAGE, MIN, MAX, LAST. It might also currently have problems with COMPUTE data sources.

Note that the act of prefilling during create is similar to a lot of the operations available via the tune

command, but using create syntax.

DS:ds-name[=mapped-ds-name[[source-index]]]:DST:dst arguments

A single RRD can accept input from several data sources (DS), for example incoming and outgoing traffic

on a specific communication line. With the DS configuration option you must define some basic properties

of each data source you want to store in the RRD.

ds-name is the name you will use to reference this particular data source from an RRD. A ds-name must be

1 to 19 characters long in the characters [a−zA−Z0−9_].

DST defines the Data Source Type. The remaining arguments of a data source entry depend on the data

source type. For GAUGE, COUNTER, DERIVE, DCOUNTER, DDERIVE and ABSOLUTE the format for a data

source entry is:

DS:ds-name:{GAUGE | COUNTER | DERIVE | DCOUNTER | DDERIVE | ABSOLUTE}:heartbeat:min:max

For COMPUTE data sources, the format is:

DS:ds-name:COMPUTE:rpn-expression

In order to decide which data source type to use, review the definitions that follow. Also consult the section

on ‘‘HOW TO MEASURE’’ for further insight.

GAUGE

is for things like temperatures or number of people in a room or the value of a RedHat share.

COUNTER

is for continuous incrementing counters like the ifInOctets counter in a router. The COUNTER data

source assumes that the counter never decreases, except when a counter overflows. The update

function takes the overflow into account. The counter is stored as a per-second rate. When the counter

overflows, RRDtool checks if the overflow happened at the 32bit or 64bit border and acts accordingly

by adding an appropriate value to the result.

DCOUNTER

the same as COUNTER, but for quantities expressed as double-precision floating point number. Could

be used to track quantities that increment by non-integer numbers, i.e. number of seconds that some

routine has taken to run, total weight processed by some technology equipment etc. The only

substantial difference is that DCOUNTER can either be upward counting or downward counting, but

not both at the same time. The current direction is detected automatically on the second non-

undefined counter update and any further change in the direction is considered a reset. The new

direction is determined and locked in by the second update after reset and its difference to the value at

reset.

DERIVE

will store the derivative of the line going from the last to the current value of the data source. This can

be useful for gauges, for example, to measure the rate of people entering or leaving a room. Internally,

derive works exactly like COUNTER but without overflow checks. So if your counter does not reset at

1.5.999 2015-11-10 2

RRDCREATE(1) rrdtool RRDCREATE(1)

32 or 64 bit you might want to use DERIVE and combine it with a MIN value of 0.

DDERIVE

the same as DERIVE, but for quantities expressed as double-precision floating point number.

NOTE on COUNTER vs DERIVE

by Don Baarda <don.baarda@baesystems.com>

If you cannot tolerate ever mistaking the occasional counter reset for a legitimate counter wrap, and

would prefer ‘‘Unknowns’’ for all legitimate counter wraps and resets, always use DERIVE with

min=0. Otherwise, using COUNTER with a suitable max will return correct values for all legitimate

counter wraps, mark some counter resets as ‘‘Unknown’’, but can mistake some counter resets for a

legitimate counter wrap.

For a 5 minute step and 32−bit counter, the probability of mistaking a counter reset for a legitimate

wrap is arguably about 0.8% per 1Mbps of maximum bandwidth. Note that this equates to 80% for

100Mbps interfaces, so for high bandwidth interfaces and a 32bit counter, DERIVE with min=0 is

probably preferable. If you are using a 64bit counter, just about any max setting will eliminate the

possibility of mistaking a reset for a counter wrap.

ABSOLUTE

is for counters which get reset upon reading. This is used for fast counters which tend to overflow. So

instead of reading them normally you reset them after every read to make sure you have a maximum

time available before the next overflow. Another usage is for things you count like number of

messages since the last update.

COMPUTE

is for storing the result of a formula applied to other data sources in the RRD. This data source is not

supplied a value on update, but rather its Primary Data Points (PDPs) are computed from the PDPs of

the data sources according to the rpn-expression that defines the formula. Consolidation functions are

then applied normally to the PDPs of the COMPUTE data source (that is the rpn-expression is only

applied to generate PDPs). In database software, such data sets are referred to as ‘‘virtual’’ or

‘‘computed’’ columns.

heartbeat defines the maximum number of seconds that may pass between two updates of this data source

before the value of the data source is assumed to be *UNKNOWN*.

min and max define the expected range values for data supplied by a data source. If min and/or max are

specified any value outside the defined range will be regarded as *UNKNOWN*. If you do not know or care

about min and max, set them to U for unknown. Note that min and max always refer to the processed

values of the DS. For a traffic−COUNTER type DS this would be the maximum and minimum data-rate

expected from the device.

If information on minimal/maximal expected values is available, always set the min and/or max properties.

This will help RRDtool in doing a simple sanity check on the data supplied when running update.

rpn-expression defines the formula used to compute the PDPs of a COMPUTE data source from other data

sources in the same <RRD>. It is similar to defining a CDEF argument for the graph command. Please refer

to that manual page for a list and description of RPN operations supported. For COMPUTE data sources, the

following RPN operations are not supported: COUNT, PREV, TIME, and LTIME. In addition, in defining the

RPN expression, the COMPUTE data source may only refer to the names of data source listed previously in

the create command. This is similar to the restriction that CDEFs must refer only to DEFs and CDEFs

previously defined in the same graph command.

When pre-filling the new RRD file using one or more source RRDs, the DS specification may hold an

optional mapping after the DS name. This takes the form of an equal sign followed by a mapped-to DS

name and an optional source index enclosed in square brackets.

For example, the DS

DS:a=b[2]:GAUGE:120:0:U

1.5.999 2015-11-10 3

RRDCREATE(1) rrdtool RRDCREATE(1)

specifies that the DS named a should be pre-filled from the DS named b in the second listed source file

(source indices are 1−based).

RRA:CF:cf arguments

The purpose of an RRD is to store data in the round robin archives (RRA). An archive consists of a number

of data values or statistics for each of the defined data-sources (DS) and is defined with an RRA line.

When data is entered into an RRD, it is first fit into time slots of the length defined with the −s option, thus

becoming a primary data point.

The data is also processed with the consolidation function (CF) of the archive. There are several

consolidation functions that consolidate primary data points via an aggregate function: AVERAGE, MIN,

MAX, LAST.

AVERAGE

the average of the data points is stored.

MIN

the smallest of the data points is stored.

MAX

the largest of the data points is stored.

LAST

the last data points is used.

Note that data aggregation inevitably leads to loss of precision and information. The trick is to pick the

aggregate function such that the interesting properties of your data is kept across the aggregation process.

The format of RRA line for these consolidation functions is:

RRA:{AVERAGE | MIN | MAX | LAST}:xff:steps:rows

xff The xfiles factor defines what part of a consolidation interval may be made up from *UNKNOWN* data

while the consolidated value is still regarded as known. It is given as the ratio of allowed *UNKNOWN*

PDPs to the number of PDPs in the interval. Thus, it ranges from 0 to 1 (exclusive).

steps defines how many of these primary data points are used to build a consolidated data point which then

goes into the archive. See also ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

rows defines how many generations of data values are kept in an RRA. Obviously, this has to be greater

than zero. See also ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

Aberrant Behavior Detection with Holt-Winters Forecasting
In addition to the aggregate functions, there are a set of specialized functions that enable RRDtool to

provide data smoothing (via the Holt-Winters forecasting algorithm), confidence bands, and the flagging

aberrant behavior in the data source time series:

• RRA:HWPREDICT:rows:alpha:beta:seasonal period[:rra-num]

• RRA:MHWPREDICT:rows:alpha:beta:seasonal period[:rra-num]

• RRA:SEASONAL:seasonal period:gamma:rra-num[:smoothing−window=fraction]

• RRA:DEVSEASONAL:seasonal period:gamma:rra-num[:smoothing−window=fraction]

• RRA:DEVPREDICT:rows:rra-num

• RRA:FAILURES:rows:threshold:window length:rra-num

These RRAs differ from the true consolidation functions in several ways. First, each of the RRAs is

updated once for every primary data point. Second, these RRAs are interdependent. To generate real-time

confidence bounds, a matched set of SEASONAL, DEVSEASONAL, DEVPREDICT, and either HWPREDICT

or MHWPREDICT must exist. Generating smoothed values of the primary data points requires a SEASONAL

RRA and either an HWPREDICT or MHWPREDICT RRA. Aberrant behavior detection requires FAILURES,

DEVSEASONAL, SEASONAL, and either HWPREDICT or MHWPREDICT.

The predicted, or smoothed, values are stored in the HWPREDICT or MHWPREDICT RRA. HWPREDICT and

1.5.999 2015-11-10 4

RRDCREATE(1) rrdtool RRDCREATE(1)

MHWPREDICT are actually two variations on the Holt-Winters method. They are interchangeable. Both

attempt to decompose data into three components: a baseline, a trend, and a seasonal coefficient.

HWPREDICT adds its seasonal coefficient to the baseline to form a prediction, whereas MHWPREDICT

multiplies its seasonal coefficient by the baseline to form a prediction. The difference is noticeable when

the baseline changes significantly in the course of a season; HWPREDICT will predict the seasonality to stay

constant as the baseline changes, but MHWPREDICT will predict the seasonality to grow or shrink in

proportion to the baseline. The proper choice of method depends on the thing being modeled. For

simplicity, the rest of this discussion will refer to HWPREDICT, but MHWPREDICT may be substituted in its

place.

The predicted deviations are stored in DEVPREDICT (think a standard deviation which can be scaled to

yield a confidence band). The FAILURES RRA stores binary indicators. A 1 marks the indexed observation

as failure; that is, the number of confidence bounds violations in the preceding window of observations met

or exceeded a specified threshold. An example of using these RRAs to graph confidence bounds and

failures appears in rrdgraph.

The SEASONAL and DEVSEASONAL RRAs store the seasonal coefficients for the Holt-Winters forecasting

algorithm and the seasonal deviations, respectively. There is one entry per observation time point in the

seasonal cycle. For example, if primary data points are generated every five minutes and the seasonal cycle

is 1 day, both SEASONAL and DEVSEASONAL will have 288 rows.

In order to simplify the creation for the novice user, in addition to supporting explicit creation of the

HWPREDICT, SEASONAL, DEVPREDICT, DEVSEASONAL, and FAILURES RRAs, the RRDtool create

command supports implicit creation of the other four when HWPREDICT is specified alone and the final

argument rra-num is omitted.

rows specifies the length of the RRA prior to wrap around. Remember that there is a one-to-one

correspondence between primary data points and entries in these RRAs. For the HWPREDICT CF, rows

should be larger than the seasonal period. If the DEVPREDICT RRA is implicitly created, the default

number of rows is the same as the HWPREDICT rows argument. If the FAILURES RRA is implicitly created,

rows will be set to the seasonal period argument of the HWPREDICT RRA. Of course, the RRDtool resize

command is available if these defaults are not sufficient and the creator wishes to avoid explicit creations of

the other specialized function RRAs.

seasonal period specifies the number of primary data points in a seasonal cycle. If SEASONAL and

DEVSEASONAL are implicitly created, this argument for those RRAs is set automatically to the value

specified by HWPREDICT. If they are explicitly created, the creator should verify that all three seasonal

period arguments agree.

alpha is the adaption parameter of the intercept (or baseline) coefficient in the Holt-Winters forecasting

algorithm. See rrdtool for a description of this algorithm. alpha must lie between 0 and 1. A value closer to

1 means that more recent observations carry greater weight in predicting the baseline component of the

forecast. A value closer to 0 means that past history carries greater weight in predicting the baseline

component.

beta is the adaption parameter of the slope (or linear trend) coefficient in the Holt-Winters forecasting

algorithm. beta must lie between 0 and 1 and plays the same role as alpha with respect to the predicted

linear trend.

gamma is the adaption parameter of the seasonal coefficients in the Holt-Winters forecasting algorithm

(HWPREDICT) or the adaption parameter in the exponential smoothing update of the seasonal deviations. It

must lie between 0 and 1. If the SEASONAL and DEVSEASONAL RRAs are created implicitly, they will

both have the same value for gamma: the value specified for the HWPREDICT alpha argument. Note that

because there is one seasonal coefficient (or deviation) for each time point during the seasonal cycle, the

adaptation rate is much slower than the baseline. Each seasonal coefficient is only updated (or adapts) when

the observed value occurs at the offset in the seasonal cycle corresponding to that coefficient.

If SEASONAL and DEVSEASONAL RRAs are created explicitly, gamma need not be the same for both.

Note that gamma can also be changed via the RRDtool tune command.

1.5.999 2015-11-10 5

RRDCREATE(1) rrdtool RRDCREATE(1)

smoothing-window specifies the fraction of a season that should be averaged around each point. By default,

the value of smoothing-window is 0.05, which means each value in SEASONAL and DEVSEASONAL will be

occasionally replaced by averaging it with its (seasonal period*0.05) nearest neighbors. Setting

smoothing-window to zero will disable the running-average smoother altogether.

rra-num provides the links between related RRAs. If HWPREDICT is specified alone and the other RRAs

are created implicitly, then there is no need to worry about this argument. If RRAs are created explicitly,

then carefully pay attention to this argument. For each RRA which includes this argument, there is a

dependency between that RRA and another RRA. The rra-num argument is the 1−based index in the order

of RRA creation (that is, the order they appear in the create command). The dependent RRA for each RRA

requiring the rra-num argument is listed here:

• HWPREDICT rra-num is the index of the SEASONAL RRA.

• SEASONAL rra-num is the index of the HWPREDICT RRA.

• DEVPREDICT rra-num is the index of the DEVSEASONAL RRA.

• DEVSEASONAL rra-num is the index of the HWPREDICT RRA.

• FAILURES rra-num is the index of the DEVSEASONAL RRA.

threshold is the minimum number of violations (observed values outside the confidence bounds) within a

window that constitutes a failure. If the FAILURES RRA is implicitly created, the default value is 7.

window length is the number of time points in the window. Specify an integer greater than or equal to the

threshold and less than or equal to 28. The time interval this window represents depends on the interval

between primary data points. If the FAILURES RRA is implicitly created, the default value is 9.

STEP, HEARTBEAT, and Rows As Durations
Traditionally RRDtool specified PDP intervals in seconds, and most other values as either seconds or PDP

counts. This made the specification for databases rather opaque; for example

rrdtool create power.rrd \

−−start now−2h −−step 1 \

DS:watts:GAUGE:300:0:24000 \

RRA:AVERAGE:0.5:1:864000 \

RRA:AVERAGE:0.5:60:129600 \

RRA:AVERAGE:0.5:3600:13392 \

RRA:AVERAGE:0.5:86400:3660

creates a database of power values collected once per second, with a five minute (300 second) heartbeat,

and four RRAs: ten days of one second, 90 days of one minute, 18 months of one hour, and ten years of one

day averages.

Step, heartbeat, and PDP counts and rows may also be specified as durations, which are positive integers

with a single-character suffix that specifies a scaling factor. See ‘‘rrd_scaled_duration’’ in librrd for scale

factors of the supported suffixes: s (seconds), m (minutes), h (hours), d (days), w (weeks), M (months), and

y (years).

Scaled step and heartbeat values (which are natively durations in seconds) are used directly, while

consolidation function row arguments are divided by their step to produce the number of rows.

With this feature the same specification as above can be written as:

rrdtool create power.rrd \

−−start now−2h −−step 1s \

DS:watts:GAUGE:5m:0:24000 \

RRA:AVERAGE:0.5:1s:10d \

RRA:AVERAGE:0.5:1m:90d \

RRA:AVERAGE:0.5:1h:18M \

RRA:AVERAGE:0.5:1d:10y

1.5.999 2015-11-10 6

RRDCREATE(1) rrdtool RRDCREATE(1)

The HEARTBEAT and the STEP
Here is an explanation by Don Baarda on the inner workings of RRDtool. It may help you to sort out why

all this *UNKNOWN* data is popping up in your databases:

RRDtool gets fed samples/updates at arbitrary times. From these it builds Primary Data Points (PDPs) on

ev ery ‘‘step’’ interval. The PDPs are then accumulated into the RRAs.

The ‘‘heartbeat’’ defines the maximum acceptable interval between samples/updates. If the interval between

samples is less than ‘‘heartbeat’’, then an average rate is calculated and applied for that interval. If the

interval between samples is longer than ‘‘heartbeat’’, then that entire interval is considered ‘‘unknown’’.

Note that there are other things that can make a sample interval ‘‘unknown’’, such as the rate exceeding

limits, or a sample that was explicitly marked as unknown.

The known rates during a PDP’s ‘‘step’’ interval are used to calculate an average rate for that PDP. If the

total ‘‘unknown’’ time accounts for more than half the ‘‘step’’, the entire PDP is marked as ‘‘unknown’’.

This means that a mixture of known and ‘‘unknown’’ sample times in a single PDP ‘‘step’’ may or may not

add up to enough ‘‘known’’ time to warrant a known PDP.

The ‘‘heartbeat’’ can be short (unusual) or long (typical) relative to the ‘‘step’’ interval between PDPs. A

short ‘‘heartbeat’’ means you require multiple samples per PDP, and if you don’t get them mark the PDP

unknown. A long heartbeat can span multiple ‘‘steps’’, which means it is acceptable to have multiple PDPs

calculated from a single sample. An extreme example of this might be a ‘‘step’’ of 5 minutes and a

‘‘heartbeat’’ of one day, in which case a single sample every day will result in all the PDPs for that entire

day period being set to the same average rate. −− Don Baarda <don.baarda@baesystems.com>

time|

axis|

begin_ _|00|

|01|

u|02|−−−−* sample1, restart "hb"−timer

u|03| /

u|04| /

u|05| /

u|06|/ "hbt" expired

u|07|

|08|−−−−* sample2, restart "hb"

|09| /

|10| /

u|11|−−−−* sample3, restart "hb"

u|12| /

u|13| /

step1_u|14| /

u|15|/ "swt" expired

u|16|

|17|−−−−* sample4, restart "hb", create "pdp" for step1 =

|18| / = unknown due to 10 "u" labled secs > 0.5 * step

|19| /

|20| /

|21|−−−−* sample5, restart "hb"

|22| /

|23| /

|24|−−−−* sample6, restart "hb"

|25| /

|26| /

|27|−−−−* sample7, restart "hb"

step2_ _|28| /

|22| /

1.5.999 2015-11-10 7

RRDCREATE(1) rrdtool RRDCREATE(1)

|23|−−−−* sample8, restart "hb", create "pdp" for step1, create "cdp"

|24| /

|25| /

graphics by vladimir.lavrov@desy.de.

HOW TO MEASURE
Here are a few hints on how to measure:

Temperature

Usually you have some type of meter you can read to get the temperature. The temperature is not

really connected with a time. The only connection is that the temperature reading happened at a certain

time. You can use the GAUGE data source type for this. RRDtool will then record your reading

together with the time.

Mail Messages

Assume you have a method to count the number of messages transported by your mail server in a

certain amount of time, giving you data like ’5 messages in the last 65 seconds’. If you look at the

count of 5 like an ABSOLUTE data type you can simply update the RRD with the number 5 and the

end time of your monitoring period. RRDtool will then record the number of messages per second. If

at some later stage you want to know the number of messages transported in a day, you can get the

av erage messages per second from RRDtool for the day in question and multiply this number with the

number of seconds in a day. Because all math is run with Doubles, the precision should be acceptable.

It’s always a Rate

RRDtool stores rates in amount/second for COUNTER, DERIVE, DCOUNTER, DDERIVE and

ABSOLUTE data. When you plot the data, you will get on the y axis amount/second which you might

be tempted to convert to an absolute amount by multiplying by the delta-time between the points.

RRDtool plots continuous data, and as such is not appropriate for plotting absolute amounts as for

example ‘‘total bytes’’ sent and received in a router. What you probably want is plot rates that you can

scale to bytes/hour, for example, or plot absolute amounts with another tool that draws bar-plots,

where the delta-time is clear on the plot for each point (such that when you read the graph you see for

example GB on the y axis, days on the x axis and one bar for each day).

EXAMPLE
rrdtool create temperature.rrd −−step 300 \

DS:temp:GAUGE:600:−273:5000 \

RRA:AVERAGE:0.5:1:1200 \

RRA:MIN:0.5:12:2400 \

RRA:MAX:0.5:12:2400 \

RRA:AVERAGE:0.5:12:2400

This sets up an RRD called temperature.rrd which accepts one temperature value every 300 seconds. If no

new data is supplied for more than 600 seconds, the temperature becomes *UNKNOWN*. The minimum

acceptable value is −273 and the maximum is 5’000.

A few archive areas are also defined. The first stores the temperatures supplied for 100 hours (1’200 * 300

seconds = 100 hours). The second RRA stores the minimum temperature recorded over every hour (12 *

300 seconds = 1 hour), for 100 days (2’400 hours). The third and the fourth RRA’s do the same for the

maximum and average temperature, respectively.

EXAMPLE 2
rrdtool create monitor.rrd −−step 300 \

DS:ifOutOctets:COUNTER:1800:0:4294967295 \

RRA:AVERAGE:0.5:1:2016 \

RRA:HWPREDICT:1440:0.1:0.0035:288

This example is a monitor of a router interface. The first RRA tracks the traffic flow in octets; the second

RRA generates the specialized functions RRAs for aberrant behavior detection. Note that the rra-num

argument of HWPREDICT is missing, so the other RRAs will implicitly be created with default parameter

1.5.999 2015-11-10 8

RRDCREATE(1) rrdtool RRDCREATE(1)

values. In this example, the forecasting algorithm baseline adapts quickly; in fact the most recent one hour

of observations (each at 5 minute intervals) accounts for 75% of the baseline prediction. The linear trend

forecast adapts much more slowly. Observations made during the last day (at 288 observations per day)

account for only 65% of the predicted linear trend. Note: these computations rely on an exponential

smoothing formula described in the LISA 2000 paper.

The seasonal cycle is one day (288 data points at 300 second intervals), and the seasonal adaption

parameter will be set to 0.1. The RRD file will store 5 days (1’440 data points) of forecasts and deviation

predictions before wrap around. The file will store 1 day (a seasonal cycle) of 0−1 indicators in the

FAILURES RRA.

The same RRD file and RRAs are created with the following command, which explicitly creates all

specialized function RRAs using ‘‘STEP, HEARTBEAT, and Rows As Durations’’.

rrdtool create monitor.rrd −−step 5m \

DS:ifOutOctets:COUNTER:30m:0:4294967295 \

RRA:AVERAGE:0.5:1:2016 \

RRA:HWPREDICT:5d:0.1:0.0035:1d:3 \

RRA:SEASONAL:1d:0.1:2 \

RRA:DEVSEASONAL:1d:0.1:2 \

RRA:DEVPREDICT:5d:5 \

RRA:FAILURES:1d:7:9:5

Of course, explicit creation need not replicate implicit create, a number of arguments could be changed.

EXAMPLE 3
rrdtool create proxy.rrd −−step 300 \

DS:Requests:DERIVE:1800:0:U \

DS:Duration:DERIVE:1800:0:U \

DS:AvgReqDur:COMPUTE:Duration,Requests,0,EQ,1,Requests,IF,/ \

RRA:AVERAGE:0.5:1:2016

This example is monitoring the average request duration during each 300 sec interval for requests processed

by a web proxy during the interval. In this case, the proxy exposes two counters, the number of requests

processed since boot and the total cumulative duration of all processed requests. Clearly these counters both

have some rollover point, but using the DERIVE data source also handles the reset that occurs when the web

proxy is stopped and restarted.

In the RRD, the first data source stores the requests per second rate during the interval. The second data

source stores the total duration of all requests processed during the interval divided by 300. The COMPUTE

data source divides each PDP of the AccumDuration by the corresponding PDP of TotalRequests and stores

the average request duration. The remainder of the RPN expression handles the divide by zero case.

AUTHORS
Tobias Oetiker <tobi@oetiker.ch>, Peter Stamfest <peter@stamfest.at>

1.5.999 2015-11-10 9

