SNORT® Users Manual
2.8.5

The Snort Project

February 12, 2010

Copyright(©1998-2003 Martin Roesch
Copyright(©2001-2003 Chris Green
Copyright(©2003-2009 Sourcefire, Inc.

Contents

[L__Snort Overview 8
L1 _Getfing Startdd e 8
L2 _snifferMade 8
L3 PacketloggerMaole 9
[1.4 Network Intrusion Detection System Mbde e 10

.41 NIDS Mode Qutput Options o vttt e e e 10
.42 Understanding Standard Alert OUkput ot i 11
.43 High Performance Configurafion 0 11
44 ChangingAlertOrder 12
L5 InlineModk e 12
51 _Snortinline Rule Application OMEr . . . o . o o v voee et e e e e e e 13
.52 Replacing Packets with SnortInline 13
.53 Installing Snortlnlide 13
.54 RunningSnortinlihe 14
55 Using the Honeynet Snom Inine TodKit« o o v oo v e e e e e e e e 14
[L5.6 TroubleshoofingSnortinline 14
L6 Miscellaneolis e 15
.61 RunningSnortasaDaehon 15
.62 Runningin Rule Stub Creation Mbdeceoivvnn. ... 15
[.6.3 Obfuscating IP Address Printdutst e 15
[1.6.4 Specifying Multiple-Instance Identifilers 16
L7 Reading Pcaps. o oo 16
[L7.1 Commandline argumeintS vttt e 16
D72 Examplds 16
L8 Tunneling Protocol Suppbrt. e 18
.81 Multiple Encapsulationsot 18
82 Togginh o oo 18
L9 Morelnformatidh e 19

[2__Configuring Snori 20
B ncludds 20
D11 Formdt 20
P12 NVamabldso 20
P13 Confl. . . . oo 23
P2 Prepracessbrs 28
P21 Fradd 28
P22 Streand5 31
D23 sfPartschn. e 36
24 RPCDecalle 41
.25 Performance MONMOr o e e 41
P26 HITPInspekt. e 44
P27 SMTP Prepracesbor 53
2.2.8 FTP/Telnet PreproCedsor v vt v e e e e e e e e e 55
P29 SSH 62
£210 DCEIRPIC 63
P2I1DNE 66
P2I2 SSITTIR . . o oo 66
2213 ARP SpaofPrepracedsor e 67
2.2.14 DCE/RPC 2 PreproCeaSOr v v v v v i e e e e e e e e e e 68
2.3 _Decoderand PreprocessorRUIES v o it e e 82
P31 Configuridg 82
2.3.2_Revertingto originalbehavior 83
P4 FEventProcessihg 83
P41 RateFilteridg 83
P42 EventEilteridg o 84
P43 FEventSuppresslon 87
P44 Fventloggidg 88
.5 Performance Profiling e 88
P51 RuleProfilidgo e 89
P52 PreprocessorProfiling 90
.53 Packet Performance Monitoring (PPM) e 93
P66 Output ModUIBS 96
P61 alertsysloly 69
P62 alemfast 98
P63 aletfull 98
P64 alertunixsock. 99
P65 logtepdumb 99
P66 datababe o e 99

P68 Unifieh 102
P69 unifiedD 102
2610 alerpreludl 031
D611 lognul 103
2612 alerfarubaactioh 104
£613 loglimith e 104
D7 HostAttribute Table 105
P71 ConfigurationFormdat 105
.72 Atribute Table File Format.o e 105
2.8 DynamicModulds. 107
P81 Formdt 107
.82 Directivds 107
.9 Reloadinga Snort Configurafion 108
.91 Fnablingsuppdrt 108
P92 Reloadingaconfiguratlon 108
- i i NS . . e e e e e 109
.10 Mulfiple Configuratiohs e 110
[2.10.1 Creating Multiple Configuratidns 110
[.10.2 Configuration Specific Elemdnts 111
[.10.3 How Configurationisapplidd? 112
B__Writing Snort Ruled 113
B TR Basibs o oot 113
B2 RulesHeaddrs 113
B21 RuleActiods 113
B22 Profocals oo 114
B23 IPAddressks 114
B24 PortNumbdrs 115
B25 TheDirectionOperalor 115
B2.6 Activate/DynamicRulks 116
B3 RuleOptiofs 116
B4 GeneralRuUle OPHONS v vttt e e e e 117
BAT My . . . oo 117
B42 teferende 117
B3 gill . .. 118
Baa _sill. ... 118
BAs el .. . 119
BA6 CIASSIYDE . . o o oo 119

BA8 metadadta 121
B.49 GeneralRule Quick Referehce 121
B.5 _Payload Detection Rule Opfibnsttt 122
BEI _conteht 122
BE2 nacabe. 123
BE3 TAWDVIAS . . . o oo e 123
BE4 _deplh 124
BEE _OMSAt . . o v o oo e 124
BE6 distande 124
BEZ _WIlhih . . . o o oo e 125
B5.8 httpelienthady 125
B59 httpcooki® 251
B5.10 httpheaddr 261
B511 htpmethaoll 261
BEI2 httpurl . . . o o 12
B513 fasmatterh 127
B514 uriconteht 128
BEI5 wurleh 128
BEI6 JSOAIARL . . . o v o oo e e e e e 129
BEIZ 0CIE . . o oo e 129
BEI8 DVIEIESt o o o e 301
B519 bytejump 23
B5.20 ftphounde 133
BE21 asll oo 133
BE22 cds . . . 134
BE23 ACAIACE . . . o o o o e, 351
B524 dceopnumh 513
B525 deestubdath 135
[3.5.26 Payload Detection Quick Referdnce 135
- i bns . . e 136
B _TAgOMSht o oo e 136
BE2 Ml ... 136
B3 105 . . o o o e 136
BOA 0l . .. 137
BBE 0PI . . o o e 137
BB6 _TAgDES . . . o o v oo e e 138
BOZ _dSideo 138
BB8 TAgS . . . o o v oot 139

BEI0 AOWDIES o oo ot e 140
BBIL S0 . o . oo 141
BEI2-a0K . . . oo 141
BOI3 windoW oo 141
BBIA YR . . . oo 142
BEI5 0C00E . . o o oot 142
BEI6 icmpid o 142
BOIZ 0cmpsell o o 142
BBI8 10E . . o o 143
BEI0 I0DDIOWD o oo, 143
BB20 Samelp o 143
B621 streamsizé 144
[3.6.22 Non-Payload Detection Quick Referénceo, 144
- i NS . . . e e e 145
BZI 10gib . . . oo 145
BZ2 sessibn 145
BZ3 163D . . o o 146
BZa xeabt.o 147
BZE 1Al . . o o oo 147
BZ6 ACIVAIRS . . . o o o o et e 148
BZ7 activatedbyl. 149
BZ8 COUBt . . o o oo 149
BZ9 replade 149
B.7.10 detectiofdilted 149
- NCE e e 150
B8 RuleThreshollls 150
B9 Writing GOOd RUIBS o o ot e 151
B91 ContentMatchilg i 152
[3.9.2 Catch the Vulnerability, Notthe Exploit o vv oo 152
3.9.3 Catch the Oddities of the Protocalinthe Rule 152
B94 OptimizingRulds 153
B95 TestingNumericalValdes 154
4__Making Snort Fastet 157
B1 MMAPedpcdp 157
5__Dynamic Module$ 158
Bl DataStructurbs 158
B11 DynamicPluginMeta oo 158

B.13 DynamicENngineDatat iee 159
B.14 SESnortPacket 159
B15 DynamicRUIES o 160

B2 Required FUNCHONS o ot 166
B21 Preprocessdrs 167
B.22 DetectionEngihe 167
B23 RUES o 168

B3 Examplds oo 169
531 PreprocessarExample 169
B32 RUES . . o\ oot 171
{6__Snort Developmerit 174
6.1 SubmittingPatches 174
.2 SnoftData FIOW o oo e 174
6.2.1 PreproCessbrs oo i e e 174
.22 DefectionPlugihs e 175
B.23 OutputPlugihs e 175

B.3 _TheSnortTedm 176

Chapter 1

Snort Overview

This manual is based aftriting Snort Ruleby Martin Roesch and further work from Chris Greenmg@snort.org .

It was then maintained by Brian Caswelbmc@snort.org and now is maintained by the Snort Team. If you have a
better way to say something or find that something in the d@ruation is outdated, drop us a line and we will update
it. If you would like to submit patches for this document, yzan find the latest version of the documentatioriigX
format in the Snort CVS repository adoc/snort_manual.tex . Small documentation updates are the easiest way to
help out the Snort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of caandhline options to play with, and it's not always obvious
which ones go together well. This file aims to make using Seaster for new users.

Before we proceed, there are a few basic concepts you shadktstand about Snort. Snort can be configured to run
in three modes:

e Sniffer modewhich simply reads the packets off of the network and displdyem for you in a continuous
stream on the console (screen).
e Packet Logger modevhich logs the packets to disk.

e Network Intrusion Detection System (NIDS) moithe, most complex and configurable configuration, which
allows Snort to analyze network traffic for matches againster-defined rule set and performs several actions
based upon what it sees.

¢ Inline mode which obtains packets from iptables instead of from libpaagd then causes iptables to drop or
pass packets based on Snort rules that use inline-spedéitypes.

1.2 Sniffer Mode

First, let's start with the basics. If you just want to prinitahe TCP/IP packet headers to the screen (i.e. sniffer jnode
try this:

Jsnort -v

This command will run Snort and just show the IP and TCP/UDRWP headers, nothing else. If you want to see the
application data in transit, try the following:

Jsnort -vd

This instructs Snort to display the packet data as well ahéaelers. If you want an even more descriptive display,
showing the data link layer headers, do this:

Jsnort -vde

(As an aside, these switches may be divided up or smasheithégre any combination. The last command could also
be typed out as:

Jsnort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want tord the packets to the disk, you need to specify a
logging directory and Snort will automatically know to gdarpacket logger mode:

Jsnort -dev - .Jlog

Of course, this assumes you have a directory nalwgedn the current directory. If you don't, Snort will exit with
an error message. When Snort runs in this mode, it colle@s/gacket it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -1 switch, you may notice that Snemmetimes uses the address of the remote computer
as the directory in which it places packets and sometimeseis the local host address. In order to log relative to the
home network, you need to tell Snort which network is the howigvork:

Jsnort -dev - Jlog -h 192.168.1.0/24

This rule tells Snort that you want to print out the data limdal CP/IP headers as well as application data into the
directory./log , and you want to log the packets relative to the 192.1681assdC network. All incoming packets
will be recorded into subdirectories of the log directorythwthe directory names being based on the address of the
remote (non-192.168.1) host.

ANOTE

Note that if both the source and destination hosts are ondheemetwork, they are logged to a directqry
with a name based on the higher of the two port numbers orgicdise of a tie, the source address.

If you're on a high speed network or you want to log the packets a more compact form for later analysis, you
should consider logging in binary mode. Binary mode loggtaekets in tcpdump format to a single binary file in the
logging directory:

Jsnort -l Jlog -b

Note the command line changes here. We don't need to spetiba network any longer because binary mode
logs everything into a single file, which eliminates the nédell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or spettife -d or -e switches because in binary mode the entire
packetis logged, not just sections of it. All you really néedo to place Snort into logger mode is to specify a logging
directory at the command line using the -I switch—the -b byrlagging switch merely provides a modifier that tells
Snort to log the packets in something other than the defatittud format of plain ASCII text.

Once the packets have been logged to the binary file, you eaithe packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or E#lerSnort can also read the packets back by using the

-r switch, which puts it into playback mode. Packets from sopdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run afyitg file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

Jsnort -dv -r packet.log

You can manipulate the data in the file in a number of ways tjindBnort’'s packet logging and intrusion detection
modes, as well as with the BPF interface that's availableftloe command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPE(fitt the command line and Snort will only see the
ICMP packets in the file:

Jsnort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snart@dump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) modéhst you don’t record every single packet sent down
the wire, try this:

Jsnort -dev -l Jlog -h 192.168.1.0/24 -c snort.conf

wheresnort.conf is the name of your rules file. This will apply the rules configdiin thesnort.conf file to
each packet to decide if an action based upon the rule typmifile should be taken. If you don'’t specify an output
directory for the program, it will default tévar/log/snort

One thing to note about the last command line is that if Srsogiing to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake afexgh The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It's also not necessary to record the data link headers fat yaplications, so you can usually omit the -e switch, too.
Jsnort -d -h 192.168.1.0/24 -l .llog -c snort.conf

This will configure Snort to run in its most basic NIDS formglying packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory strui (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort DS\inode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alertee full alert mechanism prints out the alert message in
addition to the full packet headers. There are several atleer output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are sevenratetes available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modescaessed with the -A command line switch. These
options are:

Option Description

-A fast Fast alert mode. Writes the alert in a simple format with aestamp, alert message, source and
destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will bedugetomatically if you do not specify
a mode.

-A unsock Sends alerts to a UNIX socket that another program can lsten

-A none Turns off alerting.

-A console Sends “fast-style” alerts to the console (screen).

-A cmg Generates “cmg style” alerts.

10

Packets can be logged to their default decoded ASCII formtt a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N commadshmitch.

For output modes available through the configuration file, Sectio 216.

ANOTE

Command line logging options override any output optiorecefied in the configuration file. This allows
debugging of configuration issues quickly via the commanel.i

To send alerts to syslog, use the -s switch. The defaulitiasifor the syslog alerting mechanism are LAGTHPRIV
and LOGALERT. If you want to configure other facilities for syslog tput, use the output plugin directives in the
rules files. See Secti@n 2.6.1 for more details on configwsirsipg output.

For example, use the following command line to log to deféddcoded ASCII) facility and send alerts to syslog:
Jsnort -¢ snort.conf -I Jlog -h 192.168.1.0/24 -s

As another example, use the following command line to lodéodefault facility in /var/log/snort and send alerts to a
fast alert file:

Jsnort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually likekthe following:
[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user wioatmonent of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. drcéisie, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred toggmagire ID). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directtytim rules with thesid option. In this case&;6 represents a
T/TCP event.

The third number is the revision ID. This number is primarilyed when writing signatures, as each rendition of the
rule should increment this number with the option.

1.4.3 High Performance Configuration

If you want Snort to gdast(like keep up with a 1000 Mbps connection), you need to uskadibgging and a unified
log reader such asarnyard This allows Snort to log alerts in a binary form as fast assfige while another program
performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsable, but still sorhevfast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce minimalis. For example:

Jsnort -b -A fast -c snort.conf

11

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packetyg m@ be appropriate for all installations. The Pass rules
are applied first, then the Drop rules, then the Alert ruled famally, Log rules are applied.

I
ANOTE

Sometimes an errant pass rule could cause alerts to not ghoww which case you can change the defgqult
ordering to allow Alert rules to be applied before Pass rulésr more information, please refer to the

--alert-before-pass option.

Several command line options are available to change threr ordvhich rule actions are taken.

e --alert-before-pass option forces alert rules to take affect in favor of a pase.rul

o --treat-drop-as-alert causes drop, sdrop, and reject rules and any associat¢sitalée logged as alerts,
rather then the normal action. This allows use of an inlinkcgavith passive/IDS mode.

e --process-all-events option causes Snort to process every event associated wébket, while taking the
actions based on the rules ordering. Without this optiofiaialecase), only the events for the first action based
on rules ordering are processed.

ANOTE

Pass rules are special cases here, in that the event prugésserminated when a pass rule is encountefed,
regardless of the use eprocess-all-events

1.5 Inline Mode

Snort 2.3.0 RC1 integrated the intrusion prevention sygi€&8) capability ofSnort Inline into the official Snort
project.Snort Inline obtains packets from iptables instead of libpcap and thes new rule types to help iptables
pass or drop packets based on Snort rules.

In order forSnort Inline to work properly, you must download and compile the iptaldede to include “make
install-devel” |ttp:/lwww.iptables.org). This will install thelibipg library that allowsSnort Inline to inter-
face with iptables. Also, you must build and install LibNehich is available frorimttp://iwww.packettactory.net

There are three rule types you can use when running SnoriSndtt Inline

e drop - The drop rule type will tell iptables to drop the packet aag it via usual Snort means.

e reject - The reject rule type will tell iptables to drop the packeq lit via usual Snort means, and send a TCP
reset if the protocol is TCP or an icmp port unreachable ifgf@ocol is UDP.

e sdrop - The sdrop rule type will tell iptables to drop the packet.tiNog is logged.

\NOTE

You can also replace sections of the packet payload wheg 8sit Inline . See SectiohI.H.2 for more
information.

When using aeject rule, there are two options you can use to send TCP resets:

e You can use a RAW socket (the default behaviorSoort Inline), in which case you must have an interface
that has an IP address assigned to it. If there is not an auerkith an IP address assigned with access to the
source of the packet, the packet will be logged and the reszgh will never make it onto the network.

12

http://www.iptables.org
http://www.packetfactory.net

e You can also now perform resets via a physical device whemguigitables. We take the indev name from
ip_queue and use this as the interface on which to send resetaoVaager need an IP loaded on the bridge,
and can remain pretty stealthy as tioefig layer2 _resets in snort.conf takes a source MAC address which
we substitue for the MAC of the bridge. For example:

config layer2resets

tells Snort Inline to use layer2 resets and uses the MAC address of the bridgeeaource MAC in the
packet, and:

config layer2resets: 00:06:76:DD:5F:E3

will tell Snort Inline to use layer2 resets and uses the sosMAC of 00:06:76:DD:5F:E3 in the reset packet.

e The command-line optiondisable-inline-initialization can be used to not initialize IPTables when in
inline mode. It should be used with command-line optibrto test for a valid configuration without requiring
opening inline devices and adversely affecting traffic flow.

1.5.1 Snort Inline Rule Application Order

The current rule application order is:
->activation->dynamic->pass->drop->sdrop->reject->a lert->log

This will ensure that a drop rule has precedence over an@iéog rule.

1.5.2 Replacing Packets with Snort Inline

Additionally, Jed Haile’s content replace code allows yourtodify packets before they leave the network. For
example:

alert tcp any any <> any 80 (\
msg: "tcp replace”; content"GET"; replace:"BET")

alert udp any any <> any 53 (\
msg: "udp replace"; content: "yahoo"; replace: "Xxxxx";)

These rules will comb TCP port 80 traffic looking for GET, anB® port 53 traffic looking for yahoo. Once they are
found, they are replaced with BET and xxxxx, respectivelye dnly catch is that the replace must be the same length
as the content.

1.5.3 Installing Snort Inline
To install Snort inline, use the following command:

Jconfigure --enable-inline
make
make install

13

1.5.4 Running Snort Inline

First, you need to ensure that thedmeue module is loaded. Then, you need to send traffic to Smone using the
QUEUE target. For example:

iptables -A OUTPUT -p tcp --dport 80 -j QUEUE

sends all TCP traffic leaving the firewall going to port 80 te tPUEUE target. This is what sends the packet from
kernel space to user spa@nfrt Inline). A quick way to get all outbound traffic going to the QUEUEdsuse the
rc.firewall script created and maintained by the Honeynejget jttp://www.noneynet.org/papers/noneynetitools/

This script is well-documented and allows you to direct gaskoSnort Inline by simply changing the QUEUE
variable to yes.

Finally, start Snort Inline:
snort -QDc ../etc/drop.conf -I /var/llog/snort
You can use the following command line options:

e -Q - Gets packets from iptables.
e -D - RunsSnort Inline in daemon mode. The process ID is storefafrun/snort.pid
e ¢ - Reads the following configuration file.
e -| -Logs to the following directory.
Ideally, Snort Inline will be run using only its own drop.ad. If you want to use Snort for just alerting, a separate

process should be running with its own rule set.

1.5.5 Using the Honeynet Snort Inline Toolkit

The Honeynet Snort Inline Toolkit is a statically compil&abrt Inline binary put together by the Honeynet Project
for the Linux operating system. It comes with a set of drdesutheSnort Inline binary, a snort-inline rotation
shell script, and a good README. It can be found at:

nttp://www.honeynet.org/papers/noneynet/tools/

1.5.6 Troubleshooting Snort Inline

If you run Snort Inline and see something like this:
Initializing Output Plugins!
Reading from iptables
Log directory = Ivar/log/snort
Initializing Inline mode
Inlinelnit: : Failed to send netlink message: Connection re fused

More than likely, the ipgueue module is not loaded or_fueue support is not compiled into your kernel. Either
recompile your kernel to supportigueue, or load the module.

The ip.queue module is loaded by executing:
insmod ip_queue

Also, if you want to ensure Snort Inline is getting packets) gan start it in the following manner:
snort -Qvc <configuration file>

This will display the header of every packet that Snort lalgees.

14

http://www.honeynet.org/papers/honeynet/tools/
http://www.honeynet.org/papers/honeynet/tools/

1.6 Miscellaneous

1.6.1 Running Snort as a Daemon

If you want to run Snort as a daemon, you can the add -D switahyaombination described in the previous sections.
Please notice that if you want to be able to restart Snort bgliag a SIGHUP signal to the daemon, youstspecify

the full path to the Snort binary when you start it, for exaepl

lusr/local/bin/snort -d -h 192.168.1.0/24 \
-| Ivarflog/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

Snort PID File

When Snort is run as a daemon , the daemon creates a PID file iogtdirectory. In Snort 2.6, thepid-path
command line switch causes Snort to write the PID file in theaory specified.

Additionally, the--create-pidfile switch can be used to force creation of a PID file even when mming in
daemon mode.

The PID file will be locked so that other snort processes castant. Use the-nolock-pidfile switch to not lock
the PID file.

1.6.2 Running in Rule Stub Creation Mode

If you need to dump the shared object rules stub to a directorymight need to use the —dump-dynamic-rules option.
These rule stub files are used in conjunction with the shabgetbrules. The path can be relative or absolute.

lusr/local/bin/snort -c /ust/local/etc/snort.conf \
--dump-dynamic-rules=/tmp

This path can also be configured in the snort.conf using thégoption dump-dynamic-rules-path as follows:
config dump-dynamic-rules-path: /tmp/sorules
The path configured by command line has precedence over theamfigured using dump-dynamic-rules-path.

lusr/local/bin/snort -c /ust/local/etc/snort.conf \
--dump-dynamic-rules

snort.conf:
config dump-dynamic-rules-path: /tmp/sorules

In the above mentioned scenario the dump path is set to /omybés.

1.6.3 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, yowghtiwant to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if yoo'tdeant people on the mailing list to know the IP
addresses involved. You can also combine the -O switch Wwéhh switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who séesaddress of the attacking host. For example, you
could use the following command to read the packets from dilegnd dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

Jsnort -d -v -r snortlog -O -h 192.168.1.0/24

15

1.6.4 Specifying Multiple-Instance Identifiers

In Snortv2.4, theG command line option was added that specifies an instancgfidefor the eventlogs. This option
can be used when running multiple instances of snort, eghatifferent CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specifiggeherate unique event IDs. Users can specify either a
decimal value{G 1) or hex value preceded by 03 0x11). This is also supported via a long optielogid

1.7 Reading Pcaps

Instead of having Snort listen on an interface, you can diaepiacket capture to read. Snort will read and analyze the
packets as if they came off the wire. This can be useful fdingsnd debugging Snort.

1.7.1 Command line arguments

Any of the below can be specified multiple times on the commamed(-r included) and in addition to other Snort
command line options. Note, however, that specifyipgap-reset ~ and--pcap-show multiple times has the same
effect as specifying them once.

Option Description

-r <file> Read a single pcap.

--pcap-single=<file> Same as -r. Added for completeness.

--pcap-file=<file> File that contains a list of pcaps to read. Can specifiy pafitép or directory to
recurse to get pcaps.

--pcap-list="<list>" A space separated list of pcaps to read.

--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ascii orde

--pcap-filter=<filter> Shell style filter to apply when getting pcaps from file or diary. This fil-
ter will apply to any--pcap-file or --pcap-dir arguments following. Use
--pcap-no-filter to delete filter for following--pcap-file or --pcap-dir
arguments or specifiypcap-filter again to forget previous filter and to apply
to following --pcap-file or--pcap-dir arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory

--pcap-reset If reading multiple pcaps, reset snort to post-configurastate before reading
next pcap. The default, i.e. without this option, is not teetestate.

--pcap-show Print a line saying what pcap is currently being read.

1.7.2 Examples
Read a single pcap

$ snort -r foo.pcap
$ snort --pcap-single=foo.pcap

Read pcaps from a file
$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-file=foo.txt

This will read fool.pcap, foo2.pcap and all files under /howpcaps. Note that Snort will not try to determine
whether the files under that directory are really pcap filesatr

16

Read pcaps from a command line list

$ snort --pcap-list="fool.pcap foo2.pcap foo3.pcap"

This will read fool.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory

$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /Thome/foo/pcaps.

Using filters

$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt
$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pc aps

The above will only include files that match the shell pattérpcap”, in other words, any file ending in ".pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-filter="*.cap" --pcap-dir="home/foo/pcaps

In the above, the first filter "*.pcap” will only be applied the pcaps in the file "foo.txt” (and any directories that are
recursed in that file). The addition of the second filter "htwill cause the first filter to be forgotten and then applied
to the directory /home/foo/pcaps, so only files ending imptwill be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=rhome/foo/pcaps

In this example, the first filter will be applied to foo.txt,eh no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcapbe/included.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir="home/foo/pcaps \
> --pcap-filter="*.cap" --pcap-dir=’home/foo/pcaps2

In this example, the first filter will be applied to foo.txt,eh no filter will be applied to the files found under
/homef/foo/pcaps, so all files found under /home/foo/pcailshe included, then the filter "*.cap” will be applied
to files found under /home/foo/pcaps2.

Resetting state

$ snort --pcap-dir="home/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foafys, but after each pcap is read, Snort will be reset to
a post-configuration state, meaning all buffers will be fegststatistics reset, etc. For each pcap, it will be like $nor
is seeing traffic for the first time.

17

Printing the pcap
$ snort --pcap-dir=lhome/foo/pcaps --pcap-show

The above example will read all of the files under /home/foafis and will print a line indicating which pcap is
currently being read.

1.8 Tunneling Protocol Support

Snort supports decoding of GRE, IP in IP and PPTP. To enableost) an extra configuration option is necessary:
$.Jconfigure --enable-gre
To enable IPv6 support, one still needs to use the configurattion:

$./configure --enable-ipv6

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scematioh as
Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or
Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is ldggey.
Eth IP1 GRE IP2 TCP Payload

gets logged as
Eth IP2 TCP Payload

and
Eth IP1 IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

NOTE
Decoding of PPTP, which utilizes GRE and PPP, is not cuyesabported on architectures that require word
alignment such as SPARC.

18

1.9 More Information

ChaptefR contains much information about many configunadjgtions available in the configuration file. The Snort
manual page and the outputsfort -? or snort --help contain information that can help you get Snort running
in several different modes.

ANOTE

In many shells, a backslasR)(is needed to escape the ?, so you may have todyme - \? instead of
snort -? for a list of Snort command line options.

The Snort web pag®ip://www.Snort.org) and the Snort Users mailing list:
http://marc.theaimsgroup.com/?I=snort-users

at snort-users@lists.sourceforge.net provide informative announcements as well as a venue fomuamity
discussion and support. There’s a lot to Snort, so sit battkaeverage of your choosing and read the documentation
and mailing list archives.

19

http://www.snort.org
http://marc.theaimsgroup.com/?l=snort-users

Chapter 2

Configuring Snort

2.1 Includes

Theinclude keyword allows other rules files to be included within theesfile indicated on the Snort command line.
It works much like an #include from the C programming langeiagading the contents of the named file and adding
the contents in the place where the include statement appetmre file.

2.1.1 Format

include <include file path/name>

/\NOTE

| Note that there is no semicolon at the end of this line. |

Included files will substitute any predefined variable valirgo their own variable references. See SedfionP.1.2 for
more information on defining and using variables in Snomslles.

2.1.2 Variables
Three types of variables may be defined in Snort:

e var
e portvar

e ipvar

/\NOTE ,

Note 'ipvar’s are only enabled with IPv6 support. WithoBWbE support, use a regular 'var'.

These are simple substitution variables set withviltg ipvar , orportvar keywords as follows:

var RULES_PATH rules/

portvar MY_PORTS [22,80,1024:1050]

ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]

alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN pa cket")
include $RULE_PATH/example.rule

20

IP Variables and IP Lists
IPs may be specified individually, in a list, as a CIDR block.aay combination of the three. If IPv6 support is

enabled, IP variables should be specified using 'ipvareiadtof 'var’. Using 'var’ for an IP variable is still allowed
for backward compatibility, but it will be deprecated in dite release.

IPs, IP lists, and CIDR blocks may be negated with 'I". Negiais handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list waschlly OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IBrfr 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,1[2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The ehitrany’ can be used to match all IPs, although "lany’
is not allowed. Also, negated IP ranges that are more getfemalnon-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP. lists

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,12.2.2.2,2.2.2.3]]
alert tcp $EXAMPLE any -> any any (msg:"Example”; sid:1;)

alert tcp [1.0.0.0/8,!11.1.1.0/24] any -> any any (msg:"Exa mple";sid:2;)

The following examples demonstrate some invalid uses oflfalles and IP lists.

Use of lany:

ipvar EXAMPLE any
alert tcp !$EXAMPLE any -> any any (msg:"Example”;sid:3;)

Different use of lany:

ipvar EXAMPLE lany
alert tcp $EXAMPLE any -> any any (msg:"Example”;sid:3;)

Logical contradictions:
ipvar EXAMPLE [1.1.1.1,11.1.1.1]
Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,11.1.0.0/16]

Port Variables and Port Lists
Portlists supports the declaration and lookup of ports &edrépresentation of lists and ranges of ports. Variables,

ranges, or lists may all be negated with '". Also, 'any’ wipecify any ports, but 'lany’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranggdapecified with a ’;’, such as in:

[10:50,888:900]

21

Port variables should be specified using 'portvar’. The usear’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a 'var’ cal be used to declare a port variable, provided the variable
name either ends withPORT’ or begins with 'PORT.

The following examples demonstrate several valid usagbsibf port variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [170:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLEL -> any $EXAMPLE2_PORT (msg:"Exampl e"; sid:1;)
alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example"; sid '2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Exampl e"; sid:3;)

Several invalid examples of port variables and port lisessdgmonstrated below:

Use of lany:

portvar EXAMPLES lany
var EXAMPLES lany

Logical contradictions:
portvar EXAMPLE6 [80,!80]
Ports out of range:
portvar EXAMPLE7 [65536]
Incorrect declaration and use of a port variable:

var EXAMPLE8 80
alert tcp any $EXAMPLE8 -> any any (msg:"Example”; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLEL any -> any any (msg:"Example”; sid:5;)

Variable Modifiers

Rule variable names can be modified in several ways. You cfmedmeta-variables using the $ operator. These can
be used with the variable modifier operat@rand- , as described in the following table:

22

Variable Syntax Description

var Defines a meta-variable.

$(var) or $var Replaces with the contents of varialvbe .

$(var:-default) Replaces the contents of the variatde with “default” if var is undefined.

$(var:?message) Replaces with the contents of variabi® or prints out the error message and
exits.

Here is an example of advanced variable usage in action:

ipvar MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Limitations

When embedding variables, types can not be mixed. For iostquort variables can be defined in terms of other port
variables, but old-style variables (with the 'var’ keywdhn not be embedded inside a 'portvar’.

Valid embedded variable:

portvar pvarl 80
portvar pvar2 [$pvarl,90]

Invalid embedded variable:

var pvarl 80
portvar pvar2 [$pvarl,90]

Likewise, variables can not be redefined if they were preslypdefined as a different type. They should be renamed
instead:

Invalid redefinition:

var pvar 80
portvar pvar 90

2.1.3 Config

Many configuration and command line options of Snort can leeifipd in the configuration file.

Format

config <directive> [: <value>]

23

Config Directive

Description

Ding
and

SSOr

per

config alert ~ _with _interface _name Appends interface name to aleshért -|).

config alertfile: <filename> Sets the alerts output file.

config asnl: <max-nodes> Specifies the maximum number of nodes to track when dq
ASN1 decoding. See Sectibn3.3.21 for more information
examples.

config autogenerate _preprocessor If Snort was configured to enable decoder and preproce

_decoder _rules rules, this option will cause Snort to revert back to it'sgiri
nal behavior of alerting if the decoder or preprocessor gers
an event.

config bpf _file: <filename> Specifies BPF filterssfort -F).

config checksum _drop: <types> Types of packets to drop if invalid checksums. Valueane,
noip , notcp , noicmp , noudp, ip, tcp , udp, icmp or all
(only applicable in inline mode and for packets checked
checksum _mode config option).

config checksum _mode: <types> Types of packets to calculate checksums. Valwese, noip ,
notcp , noicmp , noudp, ip , tcp , udp, icmp orall .

config chroot: <dir> Chroots to specified disfort -t).

config classification: <class> See Tabl&3]2 for a list of classifications.

config daemon Forks as a daemourort -D).

config decode _data _link Decodes Layer2 headesifrt -).

config default _rule _state: <state> Global configuration directive to enable or disable the ingd

of rules into the detection engine. Default (with or withalit
rective) is enabled. Specifiisabled to disable loading rules,

config detection: <search-method>
[lowmem] [no _stream _inserts]
[max _queue _events <num>]

Makes changes to the detection engine. The following opt
can be used:

o search-method

ac-banded

<ac | ac-std
| ac-sparsebands

| ac-bnfa
| lowmem >

| acs |

— ac Aho-Corasick Full (high memory, best perfo
mance)

— ac-std Aho-Corasick Standard (moderate memaqg
high performance)

— ac-bnfa Aho-Corasick NFA (low memory, high
performance)

— acs Aho-Corasick Sparse (small memory, moder
performance)

— ac-banded Aho-Corasick Banded (small memor
moderate performance)

— ac-sparsebands Aho-Corasick Sparse-Bande
(small memory, high performance)

— lowmem Low Memory Keyword Trie (small mem
ory, low performance)

e no_stream _inserts

e Mmax.queue _events <integer >

=
1

=

yy

ate

=<

config disable _decode _alerts

Turns off the alerts generated by the decode phase of Snor

LSS
S

config disable _inline _init _failopen Disables failopen thread that allows inline traffic to pa
while Snort is starting up. Only useful if Snort wa
configured with —enable-inline-init-failopen. snprt
--disable-inline-init-failopen)

config disable _ipopt _alerts Disables IP option length validation alerts.

24

config disable

_tcpopt _alerts

Disables option length validation alerts.

config
disable _tcpopt

_experimental _alerts

Turns off alerts generated by experimental TCP options.

config disable

_tcpopt _obsolete _alerts

Turns off alerts generated by obsolete TCP options.

config disable

_tcpopt _ttcp _alerts

Turns off alerts generated by T/TCP options.

config disable

_ttep _alerts

Turns off alerts generated by T/TCP options.

config dump _chars _only

Turns on character dumpsngrt -C).

config dump _payload

Dumps application layesfort -d).

config dump _payload _verbose

Dumps raw packet starting at link layesnfrt -X).

config enable

_decode _drops

Enables the dropping of bad packets identified by decodéy (
applicable in inline mode).

O

n

config enable

_decode _oversized _alerts

Enable alerting on packets that have headers containimgghen

fields for which the value is greater than the length of thekpag

config enable

_decode _oversized _drops

Enable dropping packets that have headers containingHengt

fields for which the value is greater than the length of thekptig
enable _decode _oversized _alerts must also be enabled fg
this to be effective (only applicable in inline mode).

=

config enable

_ipopt _drops

Enables the dropping of bad packets with bad/truncated P op

tions (only applicable in inline mode).

config enable

_mpls _multicast

Enables support for MPLS multicast. This option is nee

led

when the network allows MPLS multicast traffic. When this

option is off and MPLS multicast traffic is detected, Snor W
generate an alert. By default, it is off.

config enable

_mpls _overlapping _ip

Enables support for overlapping IP addresses in an MPLS

net-

work. In a normal situation, where there are no overlapping

IP addresses, this configuration option should not be tuomed

However, there could be situations where two private neta/d

=

share the same IP space and different MPLS labels are used to

differentiate traffic from the two VPNs. In such a situatitims
configuration option should be turned on. By default, it i§ of

config enable

_tcpopt _drops

Enables the dropping of bad packets with bad/truncated TCP

option (only applicable in inline mode).

config
enable _tcpopt

_experimental _drops

Enables the dropping of bad packets with experimental TGH op

tion. (only applicable in inline mode).

config enable

_tcpopt _obsolete _drops

Enables the dropping of bad packets with obsolete TCP op
(only applicable in inline mode).

enable _tcpopt

_ttcp _drops

Enables the dropping of bad packets with T/TCP option. (Q
applicable in inline mode).

enable _ttcp _drops

Enables the dropping of bad packets with T/TCP option. (Q
applicable in inline mode).

config event _filter. memcap

Set global memcap in bytes for thresholding. Default
1048576 bytes (1 megabyte).

<bytes>
config event _queue: [max _queue
<num>] [log <num>] [order _events
<order>]

Specifies conditions about Snort’s event queue. You carhas
following options:

e maxqueue <integer > (max events supported)
e log <integer > (number of events to log)

e order _events [priority |content _length) (how to
order events within the queue)

See Sectioh Z.4.4 for more information and examples.

25

tion

config flexresp2 _attempts: Specify the number of TCP reset packets to send to the sg

<num-resets> of the attack. Valid values are 0 to 20, however values less th
4 will default to 4. The default value without this option is 4
(Snort must be compiled with —enable-flexresp?2)

config flexresp2 _interface: Specify the response interface to use. In Windows this cam

<iface> be the interface number. (Snort must be compiled with —exng
flexresp2)

config flexresp2 _memcap: <bytes> Specify the memcap for the hash table used to track the fime
of responses. The times (hashed on a socket pair plus ptpt
are used to limit sending a response to the same half of ats(
pair every couple of seconds. Default is 1048576 bytes. rtS
must be compiled with —enable-flexresp2)

config flexresp2 _rows: <num-rows> Specify the number of rows for the hash table used to track
time of responses. Default is 1024 rows. (Snhort must be ¢
piled with —enable-flexresp2)

config flowbits _size: <num-bits> Specifies the maximum number of flowbit tags that can be
within a rule set.

config ignore _ports: <proto> Specifies ports to ignore (useful for ignoring noisy NFSftcaf

<port-list> Specify the protocol (TCP, UDP, IP, or ICMP), followed by
list of ports. Port ranges are supported.

config interface: <iface> Sets the network interfacenrt -i).

config ipv6 _frag:

[bsd _icmp _frag _alert on|off]

[, bad _ipv6 _frag _alert on]off]
[, frag _timeout <secs>] |,
max_frag _sessions <max-track>]

The following options can be used:

e bsd _icmp _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e bad_ipv6 _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e frag _timeout <integer > (Specify amount of time in
seconds to timeout first frag in hash table)

e maxfrag _sessions <integer > (Specify the numbe
of fragments to track in the hash table)

config layer2resets: <mac-addr> This option is only available when running in inline modeeS
Sectior Lb.

config logdir: <dir> Sets the logdirgnort -|).

config max _attribute _hosts: <hosts> Sets a limit on the maximum number of hosts to read fr

pm

the attribute table. Minimum value is 32 and the maximum is

524288 (512k). The default is 10000. If the number of hg
in the attribute table exceeds this value, an error is logget!
the remainder of the hosts are ignored. This option is onpy g
ported with a Host Attribute Table (see section 2.7).

sts

config max _mpls _labelchain _len:

<num-hdrs>

Sets a Snort-wide limit on the number of MPLS header|
packet can have. Its default value is -1, which means thag¢t
is no limit on label chain length.

S a
he

config min _ttl: <ttl>

Sets a Snort-wide minimum ttl to ignore all traffic.

config mpls _payload _type:
ipv4|ipvé|ethernet

Sets a Snort-wide MPLS payload type. In addition to ipv46if
and ethernet are also valid options. The default MPLS paly
type is ipv4

config no _promisc

Disables promiscuous mod&rt -p).

config nolog

Disables logging. Note: Alerts will still occursifort -N).

config nopcre

Disables pcre pattern matching.

config obfuscate

Obfuscates IP Addressesi¢rt -O).

26

config order. <order> Changes the order that rules are evaluated, eg: pass aleft lo
activation.

config pcre _match _limit: Restricts the amount of backtracking a given PCRE option.|Fo

<integer > example, it will limit the number of nested repeats withina-p
tern. A value of -1 allows for unlimited PCRE, up to the PCRE
library compiled limit (around 10 million). A value of O relis
in no PCRE evaluation. The snort default value is 1500.

config pcre _match _limit _recursion: Restricts the amount of stack used by a given PCRE option. A

<integer > value of -1 allows for unlimited PCRE, up to the PCRE library
compiled limit (around 10 million). A value of O results in no
PCRE evaluation. The snort default value is 1500. This optio
is only useful if the value is less than there _match _limit

config pkt _count: <N> Exits after N packetssgort -n).

config policy _version: Supply versioning information to configuration files. Bagg-V

<base-version-string > sion should be a string in all configuration files including in

[<binding-version-string >] cluded ones. In addition, binding version must be in any file
configured withconfig binding . This option is used to avoid
race conditions when modifying and loading a configuration
within a short time span - before Snort has had a chance to load
a previous configuration.

config profile _preprocs Print statistics on preprocessor performance. See SdZitnh
for more details.

config profile _rules Print statistics on rule performance. See Sedilon P.5. infane
details.

config quiet Disables banner and status repost®(t -q).

config read _bin _file: <pcap> Specifies a pcap file to use (instead of reading from netwark),
same effect as «tf> option.

config reference: <ref> Adds a new reference system to Snort, eg: myref
http://myurl.com/?id=

config reference _net <cidr> For IP obfuscation, the obfuscated net will be used if th&kpac
contains an IP address in the reference net. Also used to de-
termine how to set up the logging directory structure for the
session post detection rule option and ascii output plugin - [an
attempt is made to name the log directories after the IP addre
that is not in the reference net.

config set _gid: <gid> Changes GID to specified GIBrort -g).

set _uid: <uid> Sets UID to<id> (snort -u).

config show _year Shows year in timestampsnprt -y).

config snaplen: <bytes> Set the snaplength of packet, same effecPas<snaplen > or
--snaplen <snaplen > options.

config stateful Sets assurance mode for stream (stream is established).

config tagged _packet _limit: When a metric other thapackets is used in a tag option i

<max-tag> a rule, this option sets the maximum number of packets t¢ be
tagged regardless of the amount defined by the other metric.

See Sectiol3.4.5 on using the tag option when writing rdiles

for more details. The default value when this option is nat-c

o]

figured is 256 packets. Setting this option to a value of O will
disable the packet limit.

config threshold: memcap <bytes> Set global memcap in bytes for thresholding. Default| is
1048576 bytes (1 megabyte). (This is deprecated. Use config
eventfilter instead.)

config timestats _interval; <secs> Set the amount of time in seconds between logging time stats.
Default is 3600 (1 hour). Note this option is only availaldie i
Snort was built to use time stats witlenable-timestats

config umask: <umask> Sets umask when runningnfrt -m).

27

config utc Uses UTC instead of local time for timestampsoft -U).
config verbose Uses verbose logging to STDOU3nrt -v).

2.2 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. @Hew the functionality of Snortto be extended by allowing
users and programmers to drop modular plugins into Snatyfaasily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. adketpcan be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured usingrépeocessor keyword. The format of the preprocessor directive
in the Snort rules file is:

preprocessor <name>: <options>

2.2.1 Frag3

The frag3 preprocessor is a target-based IP defragmentatalule for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed withall@xfing goals:

1. Faster execution than frag2 with less complex data manageme

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively foagiag the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use ydu have some assurance of locality of reference for the
data that you are handling but in high speed, heavily frageteanvironments the nature of the splay trees worked
against the system and actually hindered performance 3Rrrsgs the sfxhash data structure and linked lists for data
handling internally which allows it to have much more préedite and deterministic performance in any environment
which should aid us in managing heavily fragmented envirents.

Target-based analysis is a relatively new concept in né&lased intrusion detection. The idea of a target-based
system is to model the actual targets on the network instéatbrely modeling the protocols and looking for attacks
within them. When IP stacks are written for different operatsystems, they are usually implemented by people
who read the RFCs and then write their interpretation of whatRFC outlines into code. Unfortunately, there are
ambiguities in the way that the RFCs define some of the edgditimms that may occurr and when this happens
different people implement certain aspects of their IPlgtalifferently. For an IDS this is a big problem.

In an environment where the attacker can determine whae stiyIP defragmentation is being used on a partic-
ular target, the attacker can try to fragment packets suahttie target will put them back together in a specific

manner while any passive systems trying to model the hoSictfzave to guess which way the target OS is going

to handle the overlaps and retransmits. As | like to say, éf dttacker has more information about the targets on
a network than the IDS does, it is possible to evade the ID% iBhwhere the idea for “target-based IDS” came

from. For more detail on this issue and how it affects IDS,cheut the famous Ptacek & Newsham paper at
http:/iwww.snort.org/docs/idspaper/

The basic idea behind target-based IDS is that we tell theihifimation about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on iatiwmabout how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this y@gyito?003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implemeatethandled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it ojattat/www.icir.org/vern/papers/activemap-0ak03.pdf

We can also present the IDS with topology information to dvioT L-based evasions and a variety of other issues, but
that’s a topic for another day. Once we have this informatiercan start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a targetiimaodule within Snort to test this idea.

28

http://www.snort.org/docs/idspaper/
http://www.icir.org/vern/papers/activemap-oak03.pdf

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2.r&'hee at least two preprocessor directives required
to activate frag3, a global configuration directive and agie@ instantiation. There can be an arbitrary number of
engines defined at startup with their own configuration, mly one global configuration.

Global Configuration

e Preprocessor naméag3 _global

e Available options: NOTE: Global configuration options acerma separated.

— maxfrags <number > - Maximum simultaneous fragments to track. Default is 8192.
— memcap <bytes > - Memory cap for self preservation. Default is 4AMB.

— prealloc _frags <number > - Alternate memory management mode. Use preallocated gagnodes
(faster in some situations).

Engine Configuration

e Preprocessor naméag3 _engine

¢ Available options: NOTE: Engine configuration options grace separated.

— timeout <seconds > - Timeout for fragments. Fragments in the engine for longantthis period will
be automatically dropped. Default is 60 seconds.

— min_ttl <value > - Minimum acceptable TTL value for a fragment packet. Deffal.
— detect _anomalies - Detect fragment anomalies.

— bind to <ip _list > -IP Listto bind this engine to. This engine will only run faagkets with destination
addresses contained within the IP List. Default valuadlis.

— overlap _limit <number> - Limits the number of overlapping fragments per packet. Teéault is
"0” (unlimited), the minimum is "0”, and the maximum is "255"This is an optional parameter. de-
tectanomalies option must be configured for this option to takecef

— min _fragment _length <number> - Defines smallest fragment size (payload size) that shoailcbinsid-
ered valid. Fragments smaller than or equal to this limit@mesidered malicious and an event is raised, if
detectanomalies is also configured. The default is "0” (unlimitegt® minimum is "0”, and the maximum
is "255”. This is an optional parameter. detestomalies option must be configured for this option to take
effect.

— policy <type > - Select a target-based defragmentation mode. Availajplestare first, last, bsd, bsd-
right, linux. Default type is bsd.

The Paxson Active Mapping paper introduced the terminofeay3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more imgp@and would like to add to this list
please feel free to send us an email!

29

Platform | Type |

AlX 2 BSD
AlX4.38.9.3 BSD
Cisco 10S Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) | linux
OpenBSD (version unknown) | linux
OpenVMS 7.1 BSD
0S/2 (version unknown) BSD
OSF1V3.0 BSD
OSF1V3.2 BSD
OSF1V4.0,5.0,5.1 BSD
Sun0S4.1.4 BSD
Sun0S5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) First

Format
Note in the advanced configuration below that there are thngines specified running wittinux, first — andlast
policies assigned. The first two engines are bound to spéPBifaxidress ranges and the last one applies to all other

traffic. Packets that don't fall within the address requiests of the first two engines automatically fall through te th
third one.

Basic Configuration

preprocessor frag3_global
preprocessor frag3_engine

Advanced Configuration

preprocessor frag3_global: prealloc_nodes 8192

preprocessor frag3_engine: policy linux, bind_to 192.168 .1.0/24
preprocessor frag3_engine: policy first, bind_to [10.1.4 7.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last, detect anomalie S

30

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of ari@salts event output is packet-based so it will work with
all output modes of Snort. Read the documentation irdtesignatures directory with filenames that begin with
“123-" for information on the different event types.

2.2.2 Stream5

The Stream5 preprocessor is a target-based TCP reassembiyiarfor Snort. It is capable of tracking sessions for
both TCP and UDP. With Stream5, the rule 'flow’ and 'flowbitgykwvords are usable with TCP as well as UDP traffic.

Transport Protocols

TCP sessions are identified via the classic TCP "connectidBP sessions are established as the result of a series of
UDP packets from two end points via the same set of ports. |@GMBsages are tracked for the purposes of checking
for unreachable and service unavailable messages, wHattieély terminate a TCP or UDP session.

Target-Based

Streamb, like Frag3, introduces target-based actionsdndling of overlapping data and other TCP anomalies. The
methods for handling overlapping data, TCP Timestampsa DatSYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream5 are the results of extemssearch with many target operating systems.

Stream API

Streamb fully supports the Stream API, other protocol ndizees/preprocessors to dynamically configure reassembly
behavior as required by the application layer protocolniidg sessions that may be ignored (large data transfer}, et
and update the identifying information about the sessippl{eation protocol, direction, etc) that can later be usgd
rules.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, da&edomutside the TCP window, etc are configured via
thedetect _anomalies option to the TCP configuration. Some of these anomaliesetected on a per-target basis.
For example, a few operating systems allow data in TCP SYMetacwhile others do not.

Stream5 Global Configuration

Global settings for the Stream5 preprocessor.

preprocessor stream5_global; \
[track tcp <yes|no>], [max_tcp <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[flush_on_alert], [show_rebuilt_packets], \
[prune_log_max <bytes>]

31

Option

Description

track _tcp <yes|no>

Track sessions for TCP. The default is "yes”.

max.tcp <num sessions>

Maximum simultaneous TCP sessions tracked. The defauR56000", maxi-
mum is "1052672”, minimum is "1".

memcap <num bytes>

Memcap for TCP packet storage. The default is "8388608” (3MiBaximum is
"1073741824” (1GB), minimum is "32768" (32KB).

track _udp <yes|no>

Track sessions for UDP. The default is "yes”.

max_.udp <num sessions>

Maximum simultaneous UDP sessions tracked. The default28000”, maxi-
mum is "1052672”, minimum is "1".

track _icmp <yes|no>

Track sessions for ICMP. The default is "yes”.

max_icmp <num sessions>

Maximum simultaneous ICMP sessions tracked. The defatit4600”, maxi-
mum is "1052672”, minimum is "1".

flush _on _alert Backwards compatibilty. Flush a TCP stream when an alerémeated on that
stream. The default is set to off.
show_rebuilt _packets Print/display packet after rebuilt (for debugging). Théaildt is set to off.

prune _log _-max <num bytes>

Print a message when a session terminates that was consomiegthan the
specified number of bytes. The default is "1048576” (1MB)nimum is "0”
(unlimited), maximum is not bounded, other than by the mgmca

Stream5 TCP Configuration

Provides a means on a per IP address target to configure T@R.pbhis can have multiple occurances, per policy
that is bound to an IP address or network. One default poliggtroe specified, and that policy is not bound to an IP

address or network.

preprocessor stream5_tcp: \

[bind_to <ip_addr>], [timeout <number secs>], \
[policy <policy id>], [min_ttl <number>], \
[overlap_limit <number>], [max_window <number>], \
[require_3whs [<number secs>]], [detect_anomalies], \

[check_session_hijacking], [use_static_footprint_siz es], \
[dont_store_large packets], [dont reassemble_async], \
[max_queued_bytes <bytes>], [max_queued_segs <number se gs>], \

[ports <client|server|both> <alljnumber [number]*>], \

[ignore_any_rules]

Option

Description

bind _to <ip _addr>

IP address or network for this policy. The default is set tg. an

timeout <num seconds>

Session timeout. The default is "30”, the minimum is "1”, ghd maxi-
mum is "86400” (approximately 1 day).

32

policy <policy _id>

The Operating System policy for the target OS. The palitgan be one
of the following:

Policy Name| Operating Systems.

first Favor first overlapped segment.

last Favor first overlapped segment.

bsd FresBSD 4.x and newer, NetBSD 2.x and
newer, OpenBSD 3.x and newer

linux Linux 2.4 and newer

old-linux Linux 2.2 and earlier

windows Windows 2000, Windows XP, Windows
95/98/ME

win2003 Windows 2003 Server

vista Windows Vista

solaris Solaris 9.x and newer

hpux HPUX 11 and newer

hpux10 HPUX 10

irix IRIX 6 and newer

macos MacOS 10.3 and newer

min _ttl <number>

Minimum TTL. The defaultis ”1”, the minimum is "1” and the mamxum
is "255",

overlap _limit <number>

Limits the number of overlapping packets per session. Tlfeultas "0”
(unlimited), the minimum is "0”, and the maximum is "255".

max_window <number>

Maximum TCP window allowed. The default is "0” (unlimitedhe
minimum is "0”, and the maximum is "1073725440” (65535 Ieffiifs
14). That is the highest possible TCP window per RFCs. Thi®os
intended to prevent a DoS against Stream5 by an attackeg asiabnor-
mally large window, so using a value near the maximum is disaged.

require _3whs [<number
seconds>]

Establish sessions only on completion of a SYN/SYN-ACK/A#hd-
shake. The default is set to off. The optional number of sds@peci-
fies a startup timeout. This allows a grace period for exgsiessions tq
be considered established during that interval immediatier Snort is
started. The default is "0” (don't consider existing sessiestablished)
the minimum is "0”, and the maximum is "86400" (approximatdl
day).

detect _anomalies

Detect and alert on TCP protocol anomalies. The defaulttisosaf.

check _session _hijacking

Check for TCP session hijacking. This check validates thelvaare
(MAC) address from both sides of the connect — as establishetthe
3-way handshake against subsequent packets received sessien. If
an ethernet layer is not part of the protocol stack receiwe8rmort, there
are no checks performed. Alerts are generated (mtect _anomalies ’
option) for either the client or server when the MAC addresshe side
or the other does not match. The default is set to off.

use _static _footprint _sizes

Use static values for determining when to build a reassednideket to
allow for repeatable tests. This option should not be usedlystion
environments. The default is set to off.

dont _store _large _packets

Performance improvement to not queue large packets in epdsy
buffer. The default is set to off. Using this option may résalmissed
attacks.

dont _reassemble _async

Don’t queue packets for reassembly if traffic has not been seéoth
directions. The default is set to queue packets.

max_queued _bytes <bytes>

Limit the number of bytes queued for reassembly on a given 3&8ion
to bytes. Default is "1048576” (LMB). A value of "0” means imited,
with a non-zero minimum of "1024”, and a maximum of 10737248
(1GB). A message is written to console/syslog when thistligiien-
forced.

33

max_queued _segs <num>

Limit the number of segments queued for reassembly on a giveR
session. The default is "2621", derived based on an aveiage§400
bytes. A value of "0” means unlimited, with a non-zero minimuwf
"2", and a maximum of "1073741824" (1GB). A message is writte
console/syslog when this limit is enforced.

ports <client|server|both>
<alljnumber(s)>

Specify the client, server, or both and list of ports in whtohperform
reassembly. This can appear more than once in a given cortirg dé-
fault settings areports client 21 23 25 42 53 80 110 111 135

136 137 139 143 445 513 514 1433 1521 2401 3306 . The mini-
mum port allowed is "1” and the maximum allowed is "65535".

ignore _any _rules

payload if there are no port specific rules for the src or desibn port.

Rules that have flow or flowbits will never be ignored. This igeafor-

mance improvement and may result in missed attacks. Usiaglties
not affect rules that look at protocol headers, only thosk wontent,
PCRE, or byte test options. The default is "off”. This optiman be used
only in default policy.

ANOTE

If no options are specified for a given TCP policy, that is tleéadIt TCP policy. If only a bindo option is
used with no other options that TCP policy uses all of the ulefalues.

Stream5 UDP Configuration

Don't process any> any (ports) rules for TCP that attempt to match

Configuration for UDP session tracking. Since there is ngatibased binding, there should be only one occurance of

the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [igno re_any_rules]

Option

Description

timeout <num seconds>

Session timeout. The default is "30”, the minimum is "1”, atheé maximum is
"86400" (approximately 1 day).

ignore _any _rules

Don't process any> any (ports) rules for UDP that attempt to match payld
if there are no port specific rules for the src or destinatiort.pRules that have
flow or flowbits will never be ignored. This is a performancepimvement and
may result in missed attacks. Using this does not affecsithlat look at protoco
headers, only those with content, PCRE, or byte test optibims default is "off".

ANOTE

With the ignoreany.rules option, a UDP rule will be ignored except when therenigther port specific rulg
that may be applied to the traffic. For example, if a UDP rulecsiies destination port 53, the 'ignored’ any
-> any rule will be applied to traffic to/from port 53, but NOT tayaother source or destination port. A lis
of rule SIDs affected by this option are printed at Snortstsip.

ANOTE

With the ignoreany.rules option, if a UDP rule that uses afy any ports includes either flow or flowbits
the ignoreany.rules option is effectively pointless. Because of the ptig¢éimpact of disabling a flowbitg
rule, the ignoreany.rules option will be disabled in this case.

34

ad

Stream5 ICMP Configuration

Configuration for ICMP session tracking. Since there is mgetbased binding, there should be only one occurance
of the ICMP configuration.

NOTE

ICMP is currently untested, in minimal code form and is NO@d for use in production networks. It is npt
turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

Option

Description

timeout

<num seconds> Session timeout. The default is ”30”, the minimum is 1", ah& maximum is
"86400” (approximately 1 day).

Example Configurations

1. This example configuration is the default configuratiorsiort.conf and can be used for repeatable tests of
stream reassembly in readback mode.

preprocessor stream5_global: \
max_tcp 8192, track tcp yes, track udp yes, track icmp no

preprocessor stream5_tcp: \
policy first, use_static_footprint_sizes

preprocessor stream5_udp: \
ignore_any_rules

2. This configuration maps two network segments to diffef@8tpolicies, one for Windows and one for Linux,

with

Alerts

all other traffic going to the default policy of Solaris.

preprocessor stream5_global: track_tcp yes

preprocessor stream5_tcp: bind_to 192.168.1.0/24, polic y windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy |i nux
preprocessor stream5_tcp: policy solaris

Stream5 uses generator ID 129. It is capable of alerting aigh{) anomalies, all of which relate to TCP anomalies.

There are

no anomalies detected relating to UDP or ICMP.

The list of SIDs is as follows:

© N o g A~ w NP

SYN on established session

Data on SYN packet

Data sent on stream not accepting data

TCP Timestamp is outside of PAWS window

Bad segment, overlap adjusted size less than/equal 0
Window size (after scaling) larger than policy allows
Limit on number of overlapping TCP packets reached

Data after Reset packet

35

2.2.3 sfPortscan

The sfPortscan module, developed by Sourcefire, is desimnddtect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker idetemmnat types of network protocols or services a host
supports. This is the traditional place where a portscaps@kace. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported byafiet; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its interatget, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the natutegittmate network communications, negative responses
from hosts are rare, and rarer still are multiple negatigpomses within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negatp®nses.

One of the most common portscanning tools in use today is NMagap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to béatitect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types ofiNap scans:

e TCP Portscan
e UDP Portscan
e |P Portscan

These alerts are for oreone portscans, which are the traditional types of scans;hose scans multiple ports on
another host. Most of the port queries will be negative,simost hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy geahs:

e TCP Decoy Portscan
e UDP Decoy Portscan
e |IP Decoy Portscan

Decoy portscans are much like the Nmap portscans descrifmmeaonly the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactipfiéide the true identity of the attacker.

sfPortscan alerts for the following types of distributedtpoans:

e TCP Distributed Portscan
e UDP Distributed Portscan

e |P Distributed Portscan

These are manyone portscans. Distributed portscans occur when multipttshquery one host for open services.
This is used to evade an IDS and obfuscate command and chostsl.

ANOTE

Negative queries will be distributed among scanning hastsye track this type of scan through the scanned
host.

sfPortscan alerts for the following types of portsweeps:

e TCP Portsweep
e UDP Portsweep

e |IP Portsweep

36

e ICMP Portsweep

These alerts are for oremany portsweeps. One host scans a single port on multipte.nfsis usually occurs when
a new exploit comes out and the attacker is looking for a $igesgrvice.

ANOTE

The characteristics of a portsweep scan may not result iymegative responses. For example, if an attacker
portsweeps a web farm for port 80, we will most likely not seenynnegative responses.

sfPortscan alerts on the following filtered portscans antspa@eps:

e TCP Filtered Portscan

e UDP Filtered Portscan

e |P Filtered Portscan

e TCP Filtered Decoy Portscan

e UDP Filtered Decoy Portscan

¢ |P Filtered Decoy Portscan

e TCP Filtered Portsweep

e UDP Filtered Portsweep

¢ |P Filtered Portsweep

e ICMP Filtered Portsweep

e TCP Filtered Distributed Portscan

e UDP Filtered Distributed Portscan

¢ |P Filtered Distributed Portscan
“Filtered” alerts indicate that there were no network esrfCMP unreachables or TCP RSTSs) or responses on closed
ports have been suppressed. It's also a good indicator athehthe alert is just a very active legitimate host. Active

hosts, such as NATSs, can trigger these alerts because thesend out many connection attempts within a very small
amount of time. A filtered alert may go off before responseaifthe remote hosts are received.

sfPortscan only generates one alert for each host pair istigmeduring the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any opetspbat were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert haslteiggered. Open port events are not individual alerts, but
tags based on the orginal scan alert.

sfPortscan Configuration

Use of the Stream5 preprocessor is required for sfPort<gmeam gives portscan direction in the case of connection-
less protocols like ICMP and UDP. You should enable the &trpeeprocessor in younort.conf , as described in

SectiofZZP.

The parameters you can use to configure the portscan module ar

1. proto <protocol>
Available options:

e TCP

37

e UDP
e IGMP
ip _proto

e all

2. scantype <scantype>
Available options:

portscan

portsweep

decoy _portscan
o distributed _portscan
o all

3. sensdevel <level>
Available options:

e low - “Low” alerts are only generated on error packets sent froetarget host, and because of the nature
of error responses, this setting should see very few falséyes. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responsés sétting is based on a static time window of
60 seconds, afterwhich this window is reset.

e medium - “Medium” alerts track connection counts, and so will gexterfiltered scan alerts. This setting
may false positive on active hosts (NATS, proxies, DNS cachte), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

e high - “High” alerts continuously track hosts on a network usintjrae window to evaluate portscan
statistics for that host. A "High” setting will catch somewsl scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitely igiguire the user to tune sfPortscan.

4. watchip <ipl|ip2/cidr[[port |port2-port3]] >
Defines which IPs, networks, and specific ports on those liostgtch. The list is a comma separated list of
IP addresses, IP address using CIDR notation. Optionaliys are specified after the IP address/CIDR using a
space and can be either a single port or a range denoted bhalBaor networks not falling into this range are
ignored if this option is used.

5. ignorescanners<ipl|ip2/cidr[[port |port2-port3]] >

Ignores the source of scan alerts. The parameter is the samatfas that ofvatch _ip .

6. ignorescanned<ipl|ip2/cidr[[port |port2-port3]] >
Ignores the destination of scan alerts. The parameter isatitme format as that efatch _ip .

7. lodfile <file>
This option will output portscan events to the file specififidfile does not contain a leading slash, this file
will be placed in the Snort config dir.

8. include_midstream
This option will include sessions picked up in midstream Inye&m5. This can lead to false alerts, especially
under heavy load with dropped packets; which is why the opsmff by default.

9. detectack scans

This option will include sessions picked up in midstream g stream module, which is necessary to detect
ACK scans. However, this can lead to false alerts, espgaiallier heavy load with dropped packets; which is
why the option is off by default.

38

Format

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distrib uted_portscanjall> \
sense_level <low|medium|high> \
watch_ip <IP or IP/CIDR> \
ignore_scanners <IP list> \
ignore_scanned <IP list> \
logfile <path and filename>

Example

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan:\

proto { all }\

scan_type { all } \

sense_level { low }

sfPortscan Alert Output

Unified Output In order to get all the portscan information logged with tierta snort generates a pseudo-packet
and uses the payload portion to store the additional porisdarmation of priority count, connection count, IP count
port count, IP range, and port range. The characteristitdseopacket are:

Src/Dst MAC Addr == MACDAD
IP Protocol == 255
IP TTL ==

Other than that, the packet looks like the IP portion of thekpathat caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload sizheopacket are equal to the length of the additional
portscan information that is logged. The size tends to beratd 00 - 200 bytes.

Open port alerts differ from the other portscan alerts, beeapen port alerts utilize the tagged packet output system
This means that if an output system that doesn't print tagigettets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload anda&iostthe port that is open.

The sfPortscan alert output was designed to work with unggezket logging, so it is possible to extend favorite Snort
GUIs to display portscan alerts and the additional infofarain the IP payload using the above packet characteristics

Log File Output Log file output is displayed in the following format, and eaipled further below:

Time: 09/08-15:07:31.603880

event id: 2

192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Po rtscan
Priority Count: 0

Connection Count: 200

IP Count: 2

Scanner IP Range: 192.168.169.3:192.168.169.4

Port/Proto Count: 200

Port/Proto Range: 20:47557

If there are open ports on the target, one or more additi@uged packet(s) will be appended:

Time: 09/08-15:07:31.603881
event ref: 2

39

192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Eventid/Event_ref
These fields are used to link an alert with the correspondpey Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). ghner e priority count, the more
bad responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src Qr dbhis is accurate for
connection-based protocols, and is more of an estimatetf@mre® Whether or not a portscan was filtered is
determined here. High connection count and low priorityrdonould indicate filtered (no response received
from target).

4. |IP Count

IP Count keeps track of the last IP to contact a host, and imengs the count if the next IP is different. For
one-to-one scans, this is a low humber. For active hostatimsber will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portswaeg-{0-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and inanésithis number when that changes. We use this
count (along with IP Count) to determine the difference letwone-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tuiagietection engine for your network(s). Here are some
tuning tips:

1. Use the watchip, ignore_scanners, and ignorescanned options.

It's important to correctly set these options. Tech _ip option is easy to understand. The analyst should set
this option to the list of Cidr blocks and IPs that they wamveich. If nowatch _ip is defined, sfPortscan will
watch all network traffic.

Theignore _scanners andignore _scanned options come into play in weeding out legitimate hosts that a
very active on your network. Some of the most common examgurleNAT IPs, DNS cache servers, syslog
servers, and nfs servers. sfPortscan may not generatefadéieves for these types of hosts, but be aware when
first tuning sfPortscan for these IPs. Depending on the typ&ea that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweemesjehen add it to th@nore _scanners option.

If the host is generating portscan alerts (and is the hostishaeing scanned), add it to tlignore _scanned
option.

2. Filtered scan alerts are much more prone to false positive

When determining false positives, the alert type is veryantgnt. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be mucé suspicious of filtered portscans. Many times
this just indicates that a host was very active during the firariod in question. If the host continually generates
these types of alerts, add it to tlyaore _scanners list or use a lower sensitivity level.

3. Make use of the Priority Count, Connection Count, IP Count Port Count, IP Range, and Port Range to
determine false positives.

40

The portscan alert details are vital in determining the sauffa portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis ilgasg) a scope level and confidence level, but
for now the user must manually do this. The easiest way toriehite false positives is through simple ratio
estimations. The following is a list of ratios to estimateldhe associated values that indicate a legimite scan
and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connectiondp&or portscans,
this ratio should be high, the higher the better. For poreggethis ratio should be low.

Port Count/IP Count: Thisratio indicates an estimated average of ports condéateer IP. For portscans, this
ratio should be high and indicates that the scanned host's were connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning hosinected to few ports but on many hosts.

Connection Count / Port Count: This ratio indicates an estimated average of connectionppe. For
portscans, this ratio should be low. This indicates thaheannection was to a different port. For portsweeps,
this ratio should be high. This indicates that there wereywamnections to the same port.

The reason tha@riority Count is not included, is because the priority count is includethi@ connection
count and the above comparisons take that into considarafibe Priority Count play an important role in
tuning because the higher the priority count the more likiely a real portscan or portsweep (unless the host is
firewalled).

If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analgesd't have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sensjtleitel, but it's also important that the portscan detection
engine generate alerts that the analyst will find informeativhe low sensitivity level only generates alerts based
on error responses. These responses indicate a portscémeaalérts generated by the low sensitivity level are
highly accurate and require the least tuning. The low siitgitevel does not catch filtered scans; since these
are more prone to false positives.

2.2.4 RPC Decode

The rpcdecode preprocessor normalizes RPC multiple fragmentedds into a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. I1eaim5 is enabled, it will only process client-side traffic. By

default, it runs against traffic on ports 111 and 32771.

Format

preprocessor rpc_decode: \

<ports> [alert fragments] \
[no_alert_multiple_requests] \

[no_alert_large_fragments] \
[no_alert_incomplete]

Option

Description

alert _fragments

Alert on any fragmented RPC record.

no_alert _multiple _requests

Don't alert when there are multiple records in one packet.

no_alert _large _fragments

Don't alert when the sum of fragmented records exceeds ockepa

no_alert _incomplete

Don't alert when a single fragment record exceeds the sizmefpacket,

2.2.5 Performance Monitor

This preprocessor measures Snort's real-time and theatetiaximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, eithersteh which prints statistics to the console window or
“file” with a file name, where statistics get printed to the cfied file name. By default, Snort’s real-time statistics

are processed. This includes:

41

Time Stamp

Drop Rate

Mbits/Sec (wire) [duplicated below for easy comparisortvather rates]
Alerts/Sec

K-Pkts/Sec (wire) [duplicated below for easy comparisotihwither rates]
Avg Bytes/Pkt (wire) [duplicated below for easy comparisath other rates]
Pat-Matched [percent of data received that Snort procésgestern matching]
Syns/Sec

SynAcks/Sec

New Sessions Cached/Sec

Sessions Del fr Cache/Sec

Current Cached Sessions

Max Cached Sessions

Stream Flushes/Sec

Stream Session Cache Faults

Stream Session Cache Timeouts

New Frag Trackers/Sec

Frag-Completes/Sec

Frag-Inserts/Sec

Frag-Deletes/Sec

Frag-Auto Deletes/Sec [memory DoS protection]

Frag-Flushes/Sec

Frag-Current [number of current Frag Trackers]

Frag-Max [max number of Frag Trackers at any time]

Frag-Timeouts

Frag-Faults

Number of CPUs [*** Only if compiled with LINUXSMP *** the next three appear for each CPU]

CPU usage (user)

CPU usage (sys)

CPU usage (ldle)

Mbits/Sec (wire) [average mbits of total traffic]

Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]

Mbits/Sec (ipreass) [average mbits Snort injects afteeddsembly]
Mbits/Sec (tcprebuilt) [average mbits Snort injects aft@P reassembly]

Mbits/Sec (applayer) [average mbits seen by rules and pobtiecoders]

42

Avg Bytes/Pkt (wire)

Avg Bytes/Pkt (ipfrag)

Avg Bytes/Pkt (ipreass)

Avg Bytes/Pkt (tcprebuilt)

Avg Bytes/Pkt (applayer)
K-Pkts/Sec (wire)

K-Pkts/Sec (ipfrag)

K-Pkts/Sec (ipreass)

K-Pkts/Sec (tcprebuilt)

K-Pkts/Sec (applayer)

Total Packets Received

Total Packets Dropped (not processed)
Total Packets Blocked (inline)
Percentage of Packets Dropped
Total Filtered TCP Packets

Total Filtered UDP Packets
Midstream TCP Sessions/Sec
Closed TCP Sessions/Sec

Pruned TCP Sessions/Sec
TimedOut TCP Sessions/Sec
Dropped Async TCP Sessions/Sec
TCP Sessions Initializing

TCP Sessions Established

TCP Sessions Closing

Max TCP Sessions (interval)

New Cached UDP Sessions/Sec
Cached UDP Ssns Del/Sec
Current Cached UDP Sessions
Max Cached UDP Sessions
Current Attribute Table Hosts (Target Based)
Attribute Table Reloads (Target Based)
Mbits/Sec (Snort)

Mbits/Sec (sniffing)

Mbits/Sec (combined)
uSeconds/Pkt (Snort)

43

uSeconds/Pkt (sniffing)

uSeconds/Pkt (combined)

KPkts/Sec (Snort)

KPkts/Sec (sniffing)

KPkts/Sec (combined)
The following options can be used with the performance nawnit

e flow - Prints out statistics about the type of traffic and protadistributions that Snort is seeing. This option
can produce large amounts of output.

e events - Turns on event reporting. This prints out statistics ahriumber of signatures that were matched
by the setwise pattern matchewf-qualified evenjsand the number of those matches that were verified with
the signature flaggg(alified evenfs This shows the user if there is a problem with the rule sat they are
running.

e max- Turns on the theoretical maximum performance that Sndectitztes given the processor speed and current
performance. This is only valid for uniprocessor machirs@sse many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

e console - Prints statistics at the console.

e file - Prints statistics in a comma-delimited format to the filattls specified. Not all statistics are output to
this file. You may also usenortfile which will output into your defined Snort log directory. Bodifithese
directives can be overridden on the command line with-Zher --perfmon-file options.

e pkicnt - Adjusts the number of packets to process before checkinthéotime sample. This boosts perfor-
mance, since checking the time sample reduces Snort’srpafee. By default, this is 10000.

e time - Represents the number of seconds between intervals.

e accumulate orreset - Defines which type of drop statistics are kept by the opegasiystem. By default,
reset is used.

e atexitonly - Dump stats for entire life of Snort.

e maxfile _size - Defines the maximum size of the comma-delimited file. Befbeefile exceeds this size, it
will be rolled into a new date stamped file of the format YYYYMADD, followed by YYYY-MM-DD.x, where
x will be incremented each time the comma delimiated file iedoover. The minimum is 4096 bytes and the
maximum is 2147483648 bytes (2GB). The default is the santleeamaximum.

Examples

preprocessor perfmonitor: \
time 30 events flow file stats.profile max console pktcnt 10 000

preprocessor perfmonitor: \
time 300 file /var/tmp/snortstat pktcnt 10000

2.2.6 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applicatigisen a data buffer, HTTP Inspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTP Ingpearks on both client requests and server responses.

The current version of HTTP Inspect only handles statelessgssing. This means that HTTP Inspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if péelare not reassembled. This works fine when there is

44

another module handling the reassembly, but there aredliimits in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various seasbly modules.

HTTP Inspect has a very “rich” user configuration. Users canfigure individual HTTP servers with a variety of
options, which should allow the user to emulate any type df server. Within HTTP Inspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration optiores tthetermine the global functioning of HTTP Inspect. The
following example gives the generic global configuratiomiat:

Format

preprocessor http_inspect; \
global \
iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert]

You can only have a single global configuration, you’ll getearor if you try otherwise.

Configuration

1.

iis _unicode _map <map_filename > [codemap <integer >]

This is the globaiis _unicode _mapfile. Theiis _unicode _mapis a required configuration parameter. The map
file can reside in the same directorysasrt.conf or be specified via a fully-qualified path to the map file.

Theiis _unicode _mapfile is a Unicode codepoint map which tells HTTP Inspect whioHepage to use when
decoding Unicode characters. For US servers, the codemespaly 1252.

A Microsoft US Unicode codepoint map is provided in the Srsontirceetc directory by default. It is called
unicode.map and should be used if no other codepoint map is availableoissupplied with Snort to generate
custom Unicodeaps--ms _unicode _generator.c , which is available éittp://www.snort.org/dl/contrib/

ANOTE

Remember that this configuration is for the global IIS Unieadap, individual servers can reference their
own IS Unicode map.

detect _anomalous _servers

This global configuration option enables generic HTTP sdarnadfic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don't turn this on if you dolnave a default server configuration that
encompasses all of the HTTP server ports that your userstraggess. In the future, we want to limit this to
specific networks so it's more useful, but for right now, timispects all network traffic.

proxy _alert

This enables global alerting on HTTP server proxy usage. @yfiguring HTTP Inspect servers and enabling
allow _proxy _use, you will only receive proxy use alerts for web users thah&nasing the configured proxies
or are using a rogue proxy server.

Please note that if users aren’t required to configure wekypuse, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy envimamts. Blind firewall proxies don’t count.

45

http://www.snort.org/dl/contrib/

Example Global Configuration

preprocessor http_inspect: \
global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations: default andogddress.

Default This configuration supplies the default server configurefits any server that is not individually configured.
Most of your web servers will most likely end up using the déffaonfiguration.

Example Default Configuration

preprocessor http_inspect_server: \
server default profile all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server; \
server 10.1.1.1 profile all ports { 80 }

Configuration by Multiple IP Addresses This format is very similar to “Configuration by IP Addresshe only
difference being that multiple IPs can be specified via a sgaparated list. There is a limit of 40 IP addresses or
CIDR notations pehttp _inspect _server line.

Example Multiple IP Configuration

preprocessor http_inspect_server; \
server { 10.1.1.1 10.2.2.0/24 } profile all ports { 80 }

Server Configuration Options

Important: Some configuration options have an argumented’pr ‘no’. This argument specifies whether the user
wants the configuration option to generate an HTTP Inspect af not. The ‘yes/no’ argument does not specify
whether the configuration option itself is on or off, only thierting functionality. In other words, whether set to ‘yes
or 'no’, HTTP normalization will still occur, and rules basen HTTP traffic will still trigger.

1. profile <all |apache Jis |iis5 _Oliis4 _0>

Users can configure HTTP Inspect by using pre-defined HTTWeserofiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server, leubat required for proper operation.

There are five profiles available: all, apache, iis, i58nd iis40.

1-A. all

Theall profile is meant to normalize the URI using most of the comnnichk$ available. We alert on the
more serious forms of evasions. This is a great profile foed@ig all types of attacks, regardless of the
HTTP serverprofile all sets the configuration options described in Table 2.3.

46

1-B.

1-C.

1-D.

ascii decoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

apache whitespace on, alert off

double decoding on, alert on

%u decoding on, alert on

bare byte decoding on, alert on

iis unicode codepoints| on, alert on

iis backslash on, alert off

iis delimiter on, alert off

webroot on, alerton

nonstrict URL parsing| on

tab.uri_delimiter is set

max headetdength 0, header length not checked

max headers 0, number of headers not checked
apache

Table 2.3: Options for the “all” Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

Theapache profile is used for Apache web servers. This differs fromithe profile by only accepting
UTF-8 standard Unicode encoding and not accepting badietaas legitimate slashes, like IIS does.

Apache also accepts tabs as whitespamefile apache

sets the configuration options described in

Table[Z3.
Table 2.4: Options for thapache Profile
Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alerton
apache whitespace on, alert on
utf_8 encoding on, alert off
non.strict url parsing | on
tab_uri_delimiter is set

max headedength 0, header length not checked
maxheaders 0, number of headers not checked
iis
Theiis profile mimics IIS servers. So that means we use IIS Unicodiec@aps for each server, %u

encoding, bare-byte encoding, double decoding, backetas#c. profile iis

options described in Tab[e2.5.
iis4 0, iis5 _0
In 1S 4.0 and 1S 5.0, there was a double decoding vulnédtgbiThese two profiles are identical i ,

47

sets the configuration

Table 2.5: Options for thizs Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

ascii decoding

on, alert off

multiple slash on, alert off
directory normalization on, alert off
webroot on, alerton
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints| on, alert on
iis backslash on, alert off
iis delimiter on, alerton
apache whitespace on, alerton
nonstrict URL parsing| on

max_headerdength
max_headers

0, header length not checked
0, number of headers not checked

except they will alert by default if a URL has a double encgdibouble decode is not supported in IS
5.1 and beyond, so it's disabled by default.

1-E. default, no profile
The default options used by HTTP Inspect do not use a profdeamdescribed in Table2.6.

Table 2.6: Default HTTP Inspect Options

Option Setting

port 80

serverflow_depth 300

client flow_depth 300

postdepth 0

chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on, alert off

utf_8 encoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alert on

iis backslash on, alert off

apache whitespace on, alert off

iis delimiter on, alert off

nonstrict URL parsing| on

max headedength 0, header length not checked

max headers 0, number of headers not checked

Profiles must be specified as the first server option and céxencdmbined with any other options except:

ports

iis _unicode _map
allow _proxy _use

server _flow _depth

48

e client _flow _depth
e post _depth

e no_alerts

e inspect _uri _only

e oversize _dir _length
e normalize _headers
e normalize _cookies
e max header _length

e max_headers

These options must be specified after gludile option.

Example

preprocessor http_inspect_server; \
server 1.1.1.1 profile all ports { 80 3128 }

. ports {<port > [<port >< ...>]}

This is how the user configures which ports to decode on theRH§efrver. However, HTTPS traffic is encrypted
and cannot be decoded with HTTP Inspect. To ignore HTTPfidrake the SSL preprocessor.

. iis _unicode _map <map filename > codemap <integer >

The IIS Unicode map is generated by the programunigodegenerator.c. This program is located on the
Snort.org web site dittp://www.snort.org/dlicontrib/ directory. Executing this program generates a
Unicode map for the system that it was run on. So, to get theifsp&nicode mappings for an IIS web server,

you run this program on that server and use that Unicode m#pdgrconfiguration.

When using this option, the user needs to specify the filedbatains the 11S Unicode map and also specify
the Unicode map to use. For US servers, this is usually 125PtH& msunicodegenerator program tells you
which codemap to use for you server; it's the ANSI code pageL ¢an select the correct code page by looking
at the available code pages that theummicodegenerator outputs.

. server _flow _depth <integer >

This specifies the amount of server response payload todhspleis option significantly increases IDS perfor-

mance because we are ignoring a large part of the netwoffict(efTTP server response payloads). A small
percentage of Snort rules are targeted at this traffic andadl $low_depth value may cause false negatives in
some of these rules. Most of these rules target either theRHi@ader, or the content that is likely to be in the
first hundred or so bytes of non-header data. Headers ardyusnder 300 bytes long, but your mileage may

vary.

This value can be set from -1 to 1460. A value of -1 causes $mayhore all server side traffic for ports defined
in ports . Inversely, a value of O causes Snort to inspect all HTTPesgrayloads defined iports (note that
this will likely slow down IDS performance). Values abovedl tSnort the number of bytes to inspect in the
first packet of the server response.

ANOTE

‘ server _flow _depth isthe same as the ofdw _depth option, which will be deprecated in a future relea#e.

. client _flow _depth <integer >

This specifies the amount of raw client request payload foeos It is similar toserver _flow _depth (above),
and has a default value of 300. It primarily eliminates Sifirarinspecting larger HTTP Cookies that appear at
the end of many client request Headers.

. post _depth <integer >

This specifies the amount of data to inspect in a client possage. The value can be set from 0 to 65495. The
default value is 0. This increases the perfomance by insgeohly specified bytes in the post message.

49

http://www.snort.org/dl/contrib/

7.

10.

11.

12.

13.

14.

ascii <yes [no>

Theasci decode option tells us whether to decode encoded ASCII chdes %2f =/, %2e = ., etc. Itis
normal to see ASCII encoding usage in URLS, so it is recomraétitht you disable HTTP Inspect alerting for
this option.

utf _8 <yes|no>

Theutf-8 decode option tells HTTP Inspect to decode standard UTFi8dde sequences that are in the URI.

This abides by the Unicode standard and only uses % encodparhe uses this standard, so for any Apache
servers, make sure you have this option turned on. As fotiladgryou may be interested in knowing when you

have a UTF-8 encoded URI, but this will be prone to false pestas legitimate web clients use this type of

encoding. Whentf _8 is enabled, ASCII decoding is also enabled to enforce cbfuectioning.

u-encode <yes |no>

This option emulates the IS %u encoding scheme. How the %oding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 charactkes%uxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value castrdefinitely be ASCII. An ASCII character is

encoded like %u002f = /, %u002e = ., etc. If naisicodemap is specified before or after this option, the
default codemap is used.

You should alert on %u encodings, because we are not awarg ¢égitimate clients that use this encoding. So
it is most likely someone trying to be covert.

bare _byte <yes|no>

Bare byte encoding is an IIS trick that uses non-ASCII charaas valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values haviee encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret nanesird encodings correctly.

The alert on this decoding should be enabled, because theredegitimate clients that encode UTF-8 this
way since it is non-standard.

base36 <yes |no>
This is an option to decode base36 encoded chars. This aptiased on info from:
http://www.yK.rim.or.|p/ shikap/patch/spp_http_deco de.patch

If %u encoding is enabled, this option will not work. You haweause thébase36 option with theutf _8 option.
Don't use the %u option, because base36 won't work. Wiase36 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

iis _unicode <yes |no>

Theiis _unicode option turns on the Unicode codepoint mapping. If there iisionicodemap option spec-
ified with the server configiis _unicode uses the default codemap. Tlse _unicode option handles the
mapping of non-ASCII codepoints that the IIS server accaptsdecodes normal UTF-8 requests.

You should alert on thiés _unicode option , because it is seen mainly in attacks and evasion attemgtenW
iis _unicode is enabled, ASCIlI and UTF-8 decoding are also enabled taremforrect decoding. To alert on
UTF-8 decoding, you must enable also enaltfie.8 yes .

double _decode <yes |no>

Thedouble _decode option is once again 11S-specific and emulates IS functipnadow this works is that 11S
does two passes through the request URI, doing decodeshiroeac In the first pass, it seems that all types of
iis encoding is done: utf-8 unicode, ascii, bare byte, and #uhe second pass, the following encodings are
done: ascii, bare byte, and %u. We leave out utf-8 becausel tiow this works is that the % encoded utf-8
is decoded to the Unicode byte in the first pass, and then UisBFd8coded in the second stage. Anyway, this
is really complex and adds tons of different encodings far onaracter. Whedouble _decode is enabled, so
ASCIl is also enabled to enforce correct decoding.

non_rfc _char {<byte > [<byte ... >]}

This option lets users receive an alert if certain non-RFarglare used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we cah@hethat. Please use this option with care,
because you could configure it to say, alert on all ‘/’ or sdmreg like that. It's flexible, so be careful.

50

http://www.yk.rim.or.jp/~shikap/patch/spp_http_decode.patch

15. multi _slash <yes |no>
This option normalizes multiple slashes in a row, so somethke: “foo/////l///bar’ get normalized to “foo/bar.”
If you want an alert when multiple slashes are seen, thengunefivith ayes ; otherwise, useo.

16. iis _backslash <yes |no>

Normalizes backslashes to slashes. This is again an ||Sationul So a request URI of “/fodar” gets normal-
ized to “/foo/bar.”

17. directory <yes |no>
This option normalizes directory traversals and selfef¢ial directories.
The directory:

[foolfake_dir/../bar

gets normalized to:
[foo/bar

The directory:
ffool./oar

gets normalized to:
[foo/bar

If you want to configure an alert, specijgs, otherwise, specifyio. This alert may give false positives, since
some web sites refer to files using directory traversals.
18. apache _whitespace <yes|no>
This option deals with the non-RFC standard of using tab fepace delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alertthisnoption may be interesting, but may also be
false positive prone.
19. iis _delimiter <yes [no>
This started out being 11S-specific, but Apache takes thisstandard delimiter was well. Since this is common,
we always take this as standard since the most popular webrsexccept it. But you can still get an alert on
this option.
20. chunk _length <non-zero positive integer >
This option is an anomaly detector for abnormally large dhsimes. This picks up the Apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses kleacoding.
21. no_pipeline _req
This option turns HTTP pipeline decoding off, and is a paerfance enhancement if needed. By default, pipeline

requests are inspected for attacks, but when this optionabled, pipeline requests are not decoded and ana-

lyzed per HTTP protocol field. It is only inspected with thengdc pattern matching.

22. non_strict

This option turns on non-strict URI parsing for the brokenyvia which Apache servers will decode a URI.
Only use this option on servers that will accept URIs likestfiget /index.html alsjdfk alsj Ij aj la jsj\s1”. The
non.strict option assumes the URI is between the first and sequameseven if there is no valid HTTP identifier
after the second space.

51

23.

24,

25,

26.

27.

28.

29.

30.

31.

allow _proxy _use

By specifying this keyword, the user is allowing proxy usethis server. This means that no alert will be
generated if the@roxy _alert global keyword has been used. If the proadert keyword is not enabled, then
this option does nothing. Thalow _proxy _use keyword is just a way to suppress unauthorized proxy use for
an authorized server.

no_alerts

This option turns off all alerts that are generated by the ATiispect preprocessor module. This has no effect
on HTTP rules in the rule set. No argument is specified.

oversize _dir _length <non-zero positive integer >

This option takes a non-zero positive integer as an argumimd argument specifies the max char directory
length for URL directory. If a url directory is larger thanishargument size, an alert is generated. A good
argument value is 300 characters. This should limit thester|DS evasion type attacks, like whisker -i 4.

inspect _uri _only

This is a performance optimization. When enabled, only tid portion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the wihcks, you'll catch most of the attacks. So if
you need extra performance, enable this optimization.irtijgortant to note that if this option is used without
anyuricontent rules, then no inspection will take place. This is obviougsithe URI is only inspected with
uricontent rules, and if there are none available, then there is nottaifigspect.

For example, if we have the following rule set:

alert tcp any any -> any 80 (msg:"content"; content: "foo";)
and the we inspect the following URI:

get /foo.htm http/1.0\r\n\r\n

No alert will be generated whemspect _uri _only is enabled. Thaspect _uri _only configuration turns off
all forms of detection excepticontent inspection.

max_header _length <positive integer up to 65535 >

This option takes an integer as an argument. The integeeisngximum length allowed for an HTTP client
request header field. Requests that exceed this length aviBeca "Long Header” alert. This alert is off by
default. To enable, specify an integer argument to eadedength of 1 to 65535. Specifying a value of 0 is
treated as disabling the alert.

webroot <yes |no>

This option generates an alert when a directory traversaktses past the web server root directory. This
generates much fewer false positives than the directorpopbecause it doesn't alert on directory traversals
that stay within the web server directory structure. It oalgrts when the directory traversals go past the web
server root directory, which is associated with certain \w#hcks.

tab _uri _delimiter

This option turns on the use of the tab character (0x09) adlimitier for a URI. Apache accepts tab as a
delimiter; IS does not. For IIS, a tab in the URI should bexitegl as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space char@g@0)precedes it. No argument is specified.

normalize _headers

This option turns on normalization for HTTP Header Fieldstincluding Cookies (using the same configuration
parameters as the URI normalization (ie, multi-slash,ading, etc.). It is useful for normalizing Referrer URIs
that may appear in the HTTP Header.

normalize _cookies

This option turns on normalization for HTTP Cookie Fieldsifig the same configuration parameters as the
URI normalization (ie, multi-slash, directory, etc.). stuseful for normalizing data in HTTP Cookies that may
be encoded.

52

32. maxheaders <positive integer up to 1024 >

This option takes an integer as an argument. The integee isiximum number of HTTP client request header
fields. Requests that contain more HTTP Headers than thig vaill cause a "Max Header” alert. The alert is
off by default. To enable, specify an integer argumnet to meaders of 1 to 1024. Specifying a value of 0 is
treated as disabling the alert.

Examples

preprocessor http_inspect_server: \
server 10.1.1.1 \
ports { 80 3128 8080 } \
server_flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: \
server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { Ox00 } \
server_flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server; \
server default \
profile all \
ports { 80 8080 }

2.2.7 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applicati®iven a data buffer, SMTP will decode the buffer
and find SMTP commands and responses. It will also mark thevaomd, data header data body sections, and TLS
data.

SMTP handles stateless and stateful processing. It saatststtween individual packets. However maintaining
correct state is dependent on the reassembly of the clidatdithe stream (ie, a loss of coherent stream data results
in a loss of state).

53

Configuration

SMTP has the usual configuration items, suclp@s andinspection _type . Also, SMTP command lines can be
normalized to remove extraneous spaces. TLS-encryptéittcan be ignored, which improves performance. In
addition, regular mail data can be ignored for an additigresformance boost. Since so few (none in the current snort
rule set) exploits are against mail data, this is relatigafe to do and can improve the performance of data inspection

The configuration options are described below:

1. ports { <port> [<port>] ... }
This specifies on what ports to check for SMTP data. Typicdhis will include 25 and possibly 465, for
encrypted SMTP.

2. inspection _type <stateful | stateless>
Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for mthr@n one space character after a command. Space
characters are defined as space (ASCII 0x20) or tab (ASCRBOx0

all checks all commands
none turns off normalization for all commands.
cmds just checks commands listed with the@malize _cmds parameter.

4. ignore _data
Ignore data section of mail (except for mail headers) wheegssing rules.

5. ignore _tls _data
Ignore TLS-encrypted data when processing rules.

6. maxcommandline _len <int>
Alert if an SMTP command line is longer than this value. Alxseof this option or a "0” means never alert on
command line length. RFC 2821 recommends 512 as a maximumaanrhline length.

7. maxheader _line _len <int>
Alert if an SMTP DATA header line is longer than this value. g8imce of this option or a "0” means never alert
on data header line length. RFC 2821 recommends 1024 as anaxdata header line length.

8. maxresponse _line _len <int>
Alert if an SMTP response line is longer than this value. Aleseof this option or a "0” means never alert on
response line length. RFC 2821 recommends 512 as a maxingponge line length.

9. alt _maxcommandline _len <int> { <cmd> [<cmd>] }
Overridesmax_command.line _len for specific commands.

10. no_alerts
Turn off all alerts for this preprocessor.

11. invalid _cmds { <Space-delimited list of commands> }
Alert if this command is sent from client side. Default is anpy list.

12. valid _cmds { <Space-delimited list of commands> }

List of valid commands. We do not alert on commands in thts Default is an empty list, but preprocessor has
this list hard-coded:

{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY EXN } { HELO
HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEWY { STARTTLS TICK
TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE} { XADR XAUTH XCIR XEXCH50 XGEN
XLICENSE XQUE XSTA XTRN XUSR}

54

13. alert _unknown _cmds
Alert if we don’t recognize command. Default is off.

14. normalize _cmds { <Space-delimited list of commands> }
Normalize this list of commands Default{SRCPT VRFY EXPN}.

15. xlink2state { enable | disable [drop] }
Enable/disable xlink2state alert. Drop if alerted. Defauénable .

16. print _cmds

List all commands understood by the preprocessor. Thisarobally printed out with the configuration because
it can print so much data.

Example

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
ignore_data \
ignore_tls_data \
max_command_line_len 512 \
max_header_line_len 1024 \
max_response_line_len 512 \
no_alerts \
alt_max_command_line_len 300 { RCPT } \
invalid_cmds { } \
valid_cmds { } \
xlink2state { disable } \
print_cmds

Default

preprocessor SMTP; \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }

Note
RCPT TO:andMAIL FROM:are SMTP commands. For the preprocessor configuration aiteeyeferred to as RCPT

and MAIL, respectively. Within the code, the preprocessiually maps RCPT and MAIL to the correct command
name.

2.2.8 FTP/Telnet Preprocessor
FTP/Telnet is an improvement to the Telnet decoder and gdesvstateful inspection capability for both FTP and

Telnet data streams. FTP/Telnet will decode the streamtifgisng FTP commands and responses and Telnet escape
sequences and normalize the fields. FTP/Telnet works ondtietit requests and server responses.

55

FTP/Telnet has the capability to handle stateless pramgssieaning it only looks for information on a packet-by-
packet basis.

The defaultis to run FTP/Telent in stateful inspection madeaning it looks for information and handles reassembled
data correctly.

FTP/Telnet has a very “rich” user configuration, similar kat of HTTP Inspect (Sde_2.2.6). Users can configure
individual FTP servers and clients with a variety of optiopwkich should allow the user to emulate any type of FTP
server or FTP Client. Within FTP/Telnet, there are four arebconfiguration: Global, Telnet, FTP Client, and FTP

Server.

ANOTE

Some configuration options have an argumenyesfor no. This argument specifies whether the user wants
the configuration option to generate a ftptelnet alert or Adte presence of the option indicates the optjon
itself is on, while theyes/no argument applies to the alerting functionality associatéh that option.

Global Configuration

The global configuration deals with configuration optionatttetermine the global functioning of FTP/Telnet. The
following example gives the generic global configuratiomiat:

Format

preprocessor ftp_telnet: \
global \
inspection_type stateful \
encrypted_traffic yes \
check_encrypted

You can only have a single global configuration, you'll getearor if you try otherwise. The FTP/Telnet global
configuration must appear before the other three areas éfycoation.

Configuration
1. inspection _type
This indicates whether to operate in stateful or statelesdem

2. encrypted _traffic <yes|no >
This option enables detection and alerting on encryptedefeind FTP command channels.

ANOTE

Wheninspection _type isin stateless mode, checks for encrypted traffic will ocouevery packet, wheregs
in stateful mode, a particular session will be noted as grted/and not inspected any further.

3. check _encrypted

Instructs the the preprocessor to continue to check an ptremhsession for a subsequent command to cease
encryption.

Example Global Configuration

preprocessor ftp_telnet: \
global inspection_type stateful encrypted traffic no

56

Telnet Configuration

The telnet configuration deals with configuration optiorat tthetermine the functioning of the Telnet portion of the
preprocessor. The following example gives the generietationfiguration format:

Format

preprocessor ftp_telnet_protocol: \
telnet \
ports { 23 } \
normalize \
ayt_attack_thresh 6 \
detect_anomalies

There should only be a single telnet configuration, and sylesat instances will override previously set values.

Configuration

1. ports {<port > [<port ><..>]}
This is how the user configures which ports to decode as telfét. SSH tunnels cannot be decoded, so adding
port 22 will only yield false positives. Typically port 23 ivbe included.

2. normalize
This option tells the preprocessor to normalize the telredfit by eliminating the telnet escape sequences. It
functions similarly to its predecessor, the teldetcode preprocessor. Rules written with 'raw’ content amti
will ignore the normailzed buffer that is created when thisien is in use.

3. ayt _attack _thresh < number >
This option causes the preprocessor to alert when the nunfbewnsecutive telnet Are You There (AYT)
commands reaches the number specified. It is only applicetda the mode is stateful.

4. detect _anomalies

In order to support certain options, Telnet supports subtiagon. Per the Telnet RFC, subnegotiation begins
with SB (subnegotiation begin) and must end with an SE (sgbiietion end). However, certain implementa-

tions of Telnet servers will ignore the SB without a cooresing SE. This is anomalous behavior which could
be an evasion case. Being that FTP uses the Telnet proto¢béaontrol connection, it is also susceptible to

this behavior. Theletect _anomalies option enables alerting on Telnet SB without the correspun8E.

Example Telnet Configuration

preprocessor ftp_telnet_protocol: \
telnet ports { 23 } normalize ayt attack_thresh 6

FTP Server Configuration

There are two types of FTP server configurations: defaultanidP address.

Default This configuration supplies the default server configuratar any FTP server that is not individually con-
figured. Most of your FTP servers will most likely end up usthg default configuration.

57

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: \

ftp server default ports { 21 }

Refer td&0 for the list of options set in default ftp servenfiguration.

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: \

ftp server 10.1.1.1 ports { 21 } ftp_cmds { XPWD XCWD }

FTP Server Configuration Options

1.

ports {<port > [<port >< ...>]}

This is how the user configures which ports to decode as FTRraomd channel traffic. Typically port 21 will
be included.

print _cmds

During initialization, this option causes the preprocess@rint the configuration for each of the FTP commands
for this server.

ftp cmds {cmdcmd}

The preprocessor is configured to alert when it sees an FThemul that is not allowed by the server.

This option specifies a list of additional commands allowgdHis server, outside of the default FTP command
set as specified in RFC 959. This may be used to allow the u$e okt commands identified in RFC 775, as
well as any additional commands as needed.

For example:

ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

. def _max_param _len <number >

This specifies the default maximum allowed parameter lefggtin FTP command. It can be used as a basic
buffer overflow detection.
alt _max_param_len <number > {cmdcmd}

This specifies the maximum allowed parameter length for geeified FTP command(s). It can be used as a
more specific buffer overflow detection. For example the USBRmand — usernames may be no longer than
16 bytes, so the appropriate configuration would be:

alt_max_param_len 16 { USER }

chk _str _fmt {cmdcmd}
This option causes a check for string format attacks in tleeisipd commands.

cmd_validity emd < fmt >
This option specifies the valid format for parameters of @&gigommand.
fmt must be enclosed ir>’s and may contain the following:

58

Value Description

int Parameter must be an integer
number Parameter must be an integer between 1 and 255
char<chars> Parameter must be a single character, onediars>
date<datefmt- Parameter follows format specified, where:

n Number

C Character
I optional format enclosed

| OR
{} choice of options
.+ - literal
string Parameter is a string (effectively unrestricted)
hostport Parameter must be a host/port specified, per RFC 959
long hostport Parameter must be a long host port specified, per RFC
1639
extendedhostport | Parameter must be an extended host port specified, per
RFC 2428
{}] One of choices enclosed within, separated by
{11 One of the choices enclosed withj, optional value

enclosed withirj)

Examples of the cmdalidity option are shown below. These examples are theuttafhecks, per RFC 959 and
others performed by the preprocessor.

cmd_validity MODE <char SBC>

cmd_validity STRU <char FRP>

cmd_validity ALLO < int [char R int] >

cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe r]j}>
cmd_validity PORT < host_port >

A cmd_validity line can be used to override these defaults andidraacheck for other commands.

This allows additional modes, including mode Z which allow s for
zip-style compression.
cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >

MDTM is an off case that is worth discussing. While not paranfestablished standard, certain FTP servers ac-
cept MDTM commands that set the modification time on a file. flest common among servers that do, accept
aformatusing YYYYMMDDHHmMmss[.uuu]. Some others accepm@fat using YYYYMMDDHHmMmMsS[+—-

]TZ format. The example above is for the first case (time fdramspecified in http://www.ietf.org/internet-
drafts/draft-ietf-ftpext-mist-16.txt)

To check validity for a server that uses the TZ format, usdalewing:
cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-}n[n]]] str ing >

. telnet _cmds <yes|no>

This option turns on detection and alerting when telnetpssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as aareattempt on an FTP command channel.

. ignore _telnet _erase _cmds <yes|no >

This option allows Snort to ignore telnet escape sequemaesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP semersot process those telnet escape se-
guences.

59

10. data _chan

This option causes the rest of snort (rules, other prepemesyto ignore FTP data channel connections. Using
this option means tha&ttO INSPECTION other than TCP state will be performed on FTP data transfirs.
can be used to improve performance, especially with largerinsfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

Use of the "datachan” option is deprecated in favor of the "ignatatachan” option. “datachan” will be
removed in a future release.

11. ignore _data _chan <yes |no>

This option causes the rest of Snort (rules, other prepemes}to ignore FTP data channel connections. Setting
this option to "yes” means th&tO INSPECTION other than TCP state will be performed on FTP data transfers.
It can be used to improve performance, especially with léitgeransfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

FTP Server Base Configuration Options

The base FTP server configuration is as follows. Optionsipddn the configuration file will modify this set of
options. FTP commands are added to the set of allowed consnd@hé other options will override those in the base
configuration.

def_max_param_len 100
ftp_cmds { USER PASS ACCT CWD CDUP SMNT

QUIT REIN TYPE STRU MODE RETR

STOR STOU APPE ALLO REST RNFR

RNTO ABOR DELE RMD MKD PWD LIST

NLST SITE SYST STAT HELP NOOP }

ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC }
ftp_cmds { PORT PASV LPRT LPSV EPRT EPSV }
ftp_cmds { FEAT OPTS }
ftp_cmds { MDTM REST SIZE MLST MLSD }
alt_ max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST BOP }
cmd_validity MODE < char SBC >
cmd_validity STRU < char FRPO [string | >
cmd_validity ALLO < int [char R int] >
cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe rj}>
cmd_validity PORT < host_port >
cmd_validity LPRT < long_host_port >
cmd_validity EPRT < extd_host_port >
cmd_validity EPSV < [{1 | 27 | 'ALL’ }] >

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client camfigions has two types: default, and by IP address.

Default This configuration supplies the default client configunatior any FTP client that is not individually con-
figured. Most of your FTP clients will most likely end up usitige default configuration.

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client default bounce no max resp_len 200

60

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client 10.1.1.1 bounce yes max_resp_len 500

FTP Client Configuration Options

1. maxresp _len <number >
This specifies the maximum allowed response length to an BRfrand accepted by the client. It can be used
as a basic buffer overflow detection.

2. bounce <yes|no >
This option turns on detection and alerting of FTP bouncaci#. An FTP bounce attack occurs when the FTP
PORT command is issued and the specified host does not matbloghof the client.

3. bounce _to < CIDR,[port |portlow,porthi] >

When the bounce option is turned on, this allows the PORT canahio use the IP address (in CIDR format) and
port (or inclusive port range) without generating an alértan be used to deal with proxied FTP connections
where the FTP data channel is different from the client.

A few examples:
e Allow bounces to 192.162.1.1 port 20020 — ie, the usBQRT 192,168,1,1,78,52
bounce to { 192.168.1.1,20020 }

e Allow bounces to 192.162.1.1 ports 20020 through 20040 thie,use ofPORT 192,168,1,1,78xx
where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }
e Allow bounces to 192.162.1.1 port 20020 and 192.168.1.220030.
bounce_to { 192.168.1.1,20020 192.168.1.2,20030 }

4. telnet _cmds <yesjno >

This option turns on detection and alerting when telnetgssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as dareattempt on an FTP command channel.

5. ignore _telnet _erase _cmds <yes|no >

This option allows Snort to ignore telnet escape sequemaesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP clidotsot process those telnet escape sequences.

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: \
global \
encrypted_traffic yes \
inspection_type stateful

preprocessor ftp_telnet_protocol:\
telnet \
normalize \
ayt_attack_thresh 200

61

This is consistent with the FTP rules as of 18 Sept 2004.

Set CWD to allow parameter length of 200

MODE has an additional mode of Z (compressed)

Check for string formats in USER & PASS commands

Check MDTM commands that set modification time on the file.

preprocessor ftp_telnet_protocol: \
ftp server default \
def_max_param_len 100 \
alt_max_param_len 200 { CWD } \
cmd_validity MODE < char ASBCZ > \
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >\
chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \
telnet_cmds yes \
ignore_data_chan yes

preprocessor ftp_telnet_protocol: \
ftp client default \
max_resp_len 256 \
bounce yes \
telnet_cmds yes

2.29 SSH

The SSH preprocessor detects the following exploits: €hgk-Response Buffer Overflow, CRC 32, Secure CRT,
and the Protocol Mismatch exploit.

Both Challenge-Response Overflow and CRC 32 attacks octarrthé key exchange, and are therefore encrypted.
Both attacks involve sending a large payload (20kb+) to #mees immediately after the authentication challenge. To
detect the attacks, the SSH preprocessor counts the nurhibgies transmitted to the server. If those bytes exceed a
predefined limit within a predefined number of packets, art @generated. Since the Challenge-Response Overflow
only effects SSHv2 and CRC 32 only effects SSHv1, the SSHores¢ring exchange is used to distinguish the attacks.

The Secure CRT and protocol mismatch exploits are obseradfbre the key exchange.

Configuration

By default, all alerts are disabled and the preprocessarkshteaffic on port 22.

The available configuration options are described below.

1. server _ports {<port > [<port >< ...>]}
This option specifies which ports the SSH preprocessor shingpect traffic to.

2. maxencrypted _packets < number >

The number of encrypted packets that Snort will inspectifgeiffnoring a given SSH session. The SSH vulner-
abilities that Snort can detect all happen at the very beginof an SSH session. Once marcryptedpackets
packets have been seen, Snort ignores the session to impedisrmance.

3. maxclient _bytes < number >

The number of unanswered bytes allowed to be transferratdaferting on Challenge-Response Overflow or
CRC 32. This number must be hit before mamxcryptedpackets packets are sent, or else Snort will ignore the
traffic.

4. maxserver _version _len < number >

62

10.

11.

12.

The maximum number of bytes allowed in the SSH server versiong before alerting on the Secure CRT
server version string overflow.

autodetect
Attempt to automatically detect SSH.

enable _respoverflow
Enables checking for the Challenge-Response Overflow &xplo

enable _sshlcrc32
Enables checking for the CRC 32 exploit.

enable _srvoverflow
Enables checking for the Secure CRT exploit.

enable _protomismatch
Enables checking for the Protocol Mismatch exploit.

enable _badmsgdir

Enable alerts for traffic flowing the wrong direction. Fortimsce, if the presumed server generates client traffic,
or if a client generates server traffic.

enable _paysize
Enables alerts for invalid payload sizes.

enable _recognition
Enable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After neaxryptedpackets is reached, the preprocessor will stop
processing traffic for a given session. If Challenge-RespOwerflow or CRC 32 false positive, try increasing the
number of required client bytes with maient bytes.

Example Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 unaskedged bytes within 20 encrypted packets for the
Challenge-Response Overflow/CRC32 exploits.

preprocessor ssh; \

server ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20 \
enable_respoverflow \
enable_sshlcrc32

2.2.10 DCE/RPC

The dcerpc preprocessor detects and decodes SMB and DCEIRFC It is primarily interested in DCE/RPC
requests, and only decodes SMB to get to the potential DOEARBuests carried by SMB.

Currently, the preprocessor only handles desegmentatt@MB and TCP layers) and defragmentation of DCE/RPC.
Snort rules can be evaded by using both types of fragmentatiith the preprocessor enabled, the rules are given
reassembled DCE/RPC data to examine.

At the SMB layer, only segmentation using WriteAndX is cunttg reassembled. Other methods will be handled in
future versions of the preprocessor.

63

Autodetection of SMB is done by looking folxXFFSMB” at the start of the SMB data, as well as checking the NetBIOS
header (which is always present for SMB) for the type "Seassiessage”.

Autodetection of DCE/RPC is not as reliable. Currently, tybes are checked in the packet. Assuming that the data
is a DCE/RPC header, one byte is checked for DCE/RPC versiml Binother for a DCE/RPC PDU type of Request.
If both match, the preprocessor proceeds with the assumibta it is looking at DCE/RPC data. If subsequent checks
are nonsensical, it ends processing.

Configuration

The proprocessor has several optional configuration optibhey are described below:
e autodetect
In addition to configured ports, try to autodetect DCE/RP§s&ms. Note that DCE/RPC can run on practically

any port in addition to the more common ports. This optionasaonfigured by default.

e ports smb { <port > [< port> <.>] }

Ports that the preprocessor monitors for SMB traffic. Defarg ports 139 and 445.

e ports dcerpc { <port > [< port> <.>] }

Ports that the preprocessor monitors for DCE/RPC over T&ffidr Default is port 135.
e disable _smb_frag
Do not do SMB desegmentation. Unless you are experiencirgges@erformance issues, this option should not

be configured as SMB segmentation provides for an easy @vapjmortunity. This option is not configured by
default.

e disable _dcerpc _frag
Do not do DCE/RPC defragmentation. Unless you are expeargraevere performance issues, this option

should not be configured as DCE/RPC fragmentation providearf easy evasion opportunity. This option is
not configured by default.

e maxfrag _size <number >

Maximum DCE/RPC fragment size to put in defragmentatiorfidsuin bytes. Default is 3000 bytes.

e memcap <number >
Maximum amount of memory available to the DCE/RPC preprece®r desegmentation and defragmentation,
in kilobytes. Default is 100000 kilobytes.

e alert _memcap

Alert if memcap is exceeded. This option is not configured éfadlt.

e reassemble _increment <number >
This option specifies how often the preprocessor shoulde@aecassembled packet to send to the detection
engine with the data that's been accrued in the segmentatidriragmentation reassembly buffers, before the

final desegmentation or defragmentation of the DCE/RPCeasiakes place. This will potentially catch an
attack earlier and is useful if in inline mode. Since the poepssor looks at TCP reassembled packets (to avoid

64

TCP overlaps and segmentation evasions), the last packet attack using DCE/RPC segmented/fragmented
evasion techniques may have already gone through befongrépeocessor looks at it, so looking at the data
early will likely catch the attack before all of the exploitd has gone through. Note, however, that in using
this option, Snort will potentially take a performance hiklot recommended if Snort is running in passive
mode as it's not really needed. The argument to the optiooifsge how often the preprocessor should create
a reassembled packet if there is data in the segmentatignifentation buffers. If not specified, this option is
disabled. A value of 0 will in effect disable this option asle

Configuration Examples

In addition to defaults, autodetect SMB and DCE/RPC sessiomon-configured ports. Don’t do desegmentation on
SMB writes. Truncate DCE/RPC fragment if greater than 40ge$

preprocessor dcerpc: \
autodetect \
disable_smb_frag \
max_frag_size 4000

In addition to defaults, don't do DCE/RPC defragmentati®aet memory cap for desegmentation/defragmentation to
50,000 kilobytes. (Since no DCE/RPC defragmentation véltone the memory cap will only apply to desegmenta-
tion.)

preprocessor dcerpc: \
disable_dcerpc_frag \
memcap 50000

In addition to the defaults, detect on DCE/RPC (or TCP) pb8ts and 2103 (overrides default). Set memory cap for
desegmentation/defragmentationto 200,000 kilobytesatéra reassembly packet every time through the prepracesso
if there is data in the desegmentation/defragmentaticfiefsif

preprocessor dcerpc: \
ports dcerpc { 135 2103 } \
memcap 200000 \
reassemble_increment 1

Default Configuration
If no options are given to the preprocessor, the default gandition will look like:
preprocessor dcerpc: \
ports smb { 139 445 } \
ports dcerpc { 135 } \
max_frag_size 3000 \

memcap 100000 \
reassemble_increment 0

Preprocessor Events

There is currently only one alert, which is triggered whea gineprocessor has reached tiencaplimit for memory
allocation. The alert is gid 130, sid 1.

Note

At the current time, there is not much to do with the dcerpgpoeessor other than turn it on and let it reassemble
fragmented DCE/RPC packets.

65

2.2.11 DNS

The DNS preprocessor decodes DNS Responses and can dettattdling exploits: DNS Client RData Overflow,
Obsolete Record Types, and Experimental Record Types.

DNS looks at DNS Response traffic over UDP and TCP and it regutream preprocessor to be enabled for TCP
decoding.

Configuration

By default, all alerts are disabled and the preprocessaahteaffic on port 53.

The available configuration options are described below.

1. ports {<port > [<port ><..>]}
This option specifies the source ports that the DNS prepsocasiould inspect traffic.

2. enable _obsolete _types
Alert on Obsolete (per RFC 1035) Record Types

3. enable _experimental _types
Alert on Experimental (per RFC 1035) Record Types

4. enable _rdata _overflow
Check for DNS Client RData TXT Overflow

The DNS preprocessor does nothing if none of the 3 vulnetiaisiit checks for are enabled. It will not operate on
TCP sessions picked up midstream, and it will cease operatica session if it loses state because of missing data
(dropped packets).

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS Cli&Data overflow vulnerability. Do not alert on
obsolete or experimental RData record types.

preprocessor dns: \
ports { 53 } \
enable_rdata_overflow

2.2.12 SSL/TLS

Encrypted traffic should be ignored by Snort for both perfante reasons and to reduce false positives. The SSL
Dynamic Preprocessor (SSLPP) decodes SSL and TLS traffioptiohally determines if and when Snort should
stop inspection of it.

Typically, SSL is used over port 443 as HTTPS. By enablingS3B& PP to inspect port 443 and enabling the noin-
spectencrypted option, only the SSL handshake of each connegfibhe inspected. Once the traffic is determined
to be encrypted, no further inspection of the data on the ection is made.

By default, SSLPP looks for a handshake followed by encq/pffic traveling to both sides. If one side responds
with an indication that something has failed, such as thel$iaake, the session is not marked as encrypted. Verifying
that faultless encrypted traffic is sent from both endpoémtsures two things: the last client-side handshake packet
was not crafted to evade Snort, and that the traffic is legitity encrypted.

In some cases, especially when packets may be missed, thelms#rved response from one endpoint will be TCP
ACKs. Therefore, if a user knows that server-side encryptgd can be trusted to mark the session as encrypted, the
user should use the 'trustservers’ option, documentedibelo

66

Configuration

1. ports {<port > [<port ><..>]}
This option specifies which ports SSLPP will inspect traffic o
By default, SSLPP watches the following ports:

e 443 HTTPS
e 465 SMTPS
e 563 NNTPS
e 636 LDAPS
e 989 FTPS
e 992 TelnetS
e 993 IMAPS
e 994 IRCS
e 995 POPS

2. noinspect _encrypted
Disable inspection on traffic that is encrypted. Defaultffs o

3. ftrustservers

Disables the requirement that application (encrypted daist be observed on both sides of the session before
a session is marked encrypted. Use this option for slighetyen performance if you trust that your servers are
not compromised. This requires theinspect _encrypted option to be useful. Default is off.

Examples/Default Configuration from snort.conf

Enables the SSL preprocessor and tells it to disable ingpech encrypted traffic.

preprocessor ssl: noinspect_encrypted

2.2.13 ARP Spoof Preprocessor
The ARP spoof preprocessor decodes ARP packets and deteBta#hacks, unicast ARP requests, and inconsistent
Ethernet to IP mapping.

When no arguments are specified to arpspoof, the prepradespects Ethernet addresses and the addresses in the
ARP packets. When inconsistency occurs, an alert with GIDdrid SID 2 or 3 is generated.

When ™unicast " is specified as the argument of arpspoof, the preprocessrks for unicast ARP requests. An
alert with GID 112 and SID 1 will be generated if a unicast ARBuest is detected.

Specify a pair of IP and hardware address as the argumerigmof _detect _host . The host with the IP address
should be on the same layer 2 segment as Snort is. SpecifyostéFhMAC combo per line. The preprocessor will
use this list when detecting ARP cache overwrite attacksrt/8ID 4 is used in this case.

Format

preprocessor arpspoof[: -unicast]
preprocessor arpspoof _detect host; ip mac

67

Option | Description
ip IP address.
mac The Ethernet address corresponding to the preceding IP.

Example Configuration

The first example configuration does neither unicast detector ARP mapping monitoring. The preprosessor merely
looks for Ethernet address inconsistencies.

preprocessor arpspoof

The next example configuration does not do unicast detebtiomonitors ARP mapping for hosts 192.168.40.1 and
192.168.40.2.

preprocessor arpspoof
preprocessor arpspoof_detect host; 192.168.40.1 f0:0f; 00:0:0f:00
preprocessor arpspoof_detect host; 192.168.40.2 f0:0f; 00:f0:0f:01

The third example configuration has unicast detection ekbl

preprocessor arpspoof: -unicast
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:0:0f:00
preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

2.2.14 DCE/RPC 2 Preprocessor

The main purpose of the preprocessor is to perform SMB desatation and DCE/RPC defragmentation to avoid
rule evasion using these techniques. SMB desegmentatiparisrmed for the following commands that can be
used to transport DCE/RPC requests and respor8et , Write Block Raw , Write and Close , Write AndX ,
Transaction , Transaction Secondary , Read, Read Block Raw andRead AndX. The following transports are sup-
ported for DCE/RPC: SMB, TCP, UDP and RPC over HTTP v.1 praxy server. New rule options have been im-
plemented to improve performance, reduce false positimelsreduce the count and complexity of DCE/RPC based
rules.

Dependency Requirements

For proper functioning of the preprocessor:

e Thedcerpc preprocessor (the initial iteration) must be disabled.

e Stream session tracking must be enabled siream5 . The preprocessor requires a session tracker to keep its
data.

e Stream reassembly must be performed for TCP sessionsslfi@édided that a session is SMB or DCE/RPC, ei-
ther through configured ports, servers or autodetectirgidérpc2 preprocessor will enable stream reassembly
for that session if necessary.

¢ |P defragmentation should be enabled, i.e.ftag8 preprocessor should be enabled and configured.

68

Target Based

There are enough important differences between WindowsSamnaba versions that a target based approach has been
implemented. Some important differences:

Named pipe instance tracking

A combination of valid login handle or UID, share handle oDTdnd file/named pipe handle or FID must be
used to write data to a named pipe. The binding between teetpiendent on OS/software version.

Samba 3.0.22 and earlier

Any valid UID and TID, along with a valid FID can be used to makeequest, however, if the TID
used in creating the FID is deleted (via a tree disconneut) /D that was created using this TID
becomes invalid, i.e. no more requests can be written tawaed pipe instance.

Samba greater than 3.0.22
Any valid TID, along with a valid FID can be used to make a rexjuélowever, only the UID used
in opening the named pipe can be used to make a request usirkj@hhandle to the named pipe
instance. If the TID used to create the FID is deleted (vi@a tlisconnect), the FID that was created
using this TID becomes invalid, i.e. no more requests cantitew to that named pipe instance. If

the UID used to create the named pipe instance is deleted [aigoff AndX), since it is necessary
in making a request to the named pipe, the FID becomes invalid

Windows 2003
Windows XP
Windows Vista

These Windows versions require strict binding between ttiz UID and FID used to make a request
to a named pipe instance. Both the UID and TID used to opendheed pipe instance must be

used when writing data to the same named pipe instance. foherdeleting either the UID or TID
invalidates the FID.

Windows 2000

Windows 2000 is interesting in that the first request to a répipe must use the same binding as that
of the other Windows versions. However, requests afterftimw the same binding as Samba 3.0.22
and earlier, i.e. no binding. It also follows Samba gredtant3.0.22 in that deleting the UID or TID
used to create the named pipe instance also invalidates it.

Accepted SMB commands

Samba in particular does not recognize certain commandsramiPC$ tree.

Samba (all versions)

Under anlPC$ tree, does not accept:
Open
Write And Close
Read
Read Block Raw
Write Block Raw
Windows (all versions)

Accepts all of the above commands undeiRCH tree.

AndX command chaining

69

Windows is very strict in what command combinations it akote be chained. Samba, on the other hand, is
very lax and allows some nonsensical combinations, e.gtipfeilogins and tree connects (only one place to
return handles for these), login/logoff and tree connest/tlisconnect. Ultimately, we don’t want to keep track
of data that the server won't accept. An evasion possibilibyild be accepting a fragment in a request that the
server won't accept that gets sandwiched between an exploit

Transaction tracking

The differences betweenTaansaction request and using one of théite* commands to write data to a
named pipe are that (1) &ansaction performs the operations of a write and a read from the namee, pi
whereas in using th@/rite* commands, the client has to explicitly send one ofRbed* requests to tell the
server to send the response and (2)amsaction request is not written to the named pipe until all of the data i
received (via potentidiransaction Secondary requests) whereas with thigite* commands, data is written

to the named pipe as it is received by the server. Multiple3aation requests can be made simultaneously to
the same named pipe. These requests can also be segmeht&ngiction Secondary commands. What
distinguishes them (when the same named pipe is being wiitte.e. having the same FID) are fields in the
SMB header representing a process id (PID) and multipleMid]). The PID represents the process this request
is a part of. An MID represents different sub-processesiwithprocess (or under a PID). Segments for each
"thread” are stored separately and written to the named pwipen all segments are received. It is necessary to
track this so as not to munge these requests together (widaldwe a potential evasion opportunity).

Windows (all versions)

Uses a combination of PID and MID to define a "thread”.
Samba (all versions)

Uses just the MID to define a "thread”.

Multliple Bind requests

A Bind request is the first request that must be made in a conneatiented DCE/RPC session in order to
specify the interface/interfaces that one wants to comopateiwith.

Windows (all versions)

For all of the Windows versions, only ornd can ever be made on a session whether or not it
succeeds or fails. Any binding after that must useAher Context request. If anotheBind is
made, all previous interface bindings are invalidated.

Samba 3.0.20 and earlier
Any amount ofBind requests can be made.
Samba later than 3.0.20

AnotherBind request can be made if the first failed and no interfaces wereessfully bound to. If
aBind after a successfillind is made, all previous interface bindings are invalidated.

DCE/RPC Fragmented requests - Context ID

Each fragment in a fragmented request carries the contexXttite bound interface it wants to make the request
to.

Windows (all versions)

The context id that is ultimately used for the request is ammd in the first fragment. The context id
field in any other fragment can contain any value.

Samba (all versions)

The context id that is ultimately used for the request is aimrd in the last fragment. The context id
field in any other fragment can contain any value.

DCE/RPC Fragmented requests - Operation number

70

Each fragment in a fragmented request carries an operatiobar (opnum) which is more or less a handle to
a function offered by the interface.

Samba (all versions)
Windows 2000
Windows 2003
Windows XP

The opnum that is ultimately used for the request is conthinghe last fragment. The opnum field
in any other fragment can contain any value.

Windows Vista

The opnum that is ultimately used for the request is conthinghe first fragment. The opnum field
in any other fragment can contain any value.

DCE/RPC Stub data byte order

The byte order of the stub data is determined differentlyfimdows and Samba.

Windows (all versions)
The byte order of the stub data is that which was used iBBitite request.
Samba (all versions)
The byte order of the stub data is that which is used in theestgarrying the stub data.

Configuration

Thedcerpc2 preprocessor has a global configuration and one or morersgsuéigurations. The global preprocessor
configuration name idcerpc2 and the server preprocessor configuration nandegc2 _server .

Global Configuration

preprocessor dcerpc2

The globaldcerpc2 configuration is required. Only one glolgerpc2 configuration can be specified.

Option syntax

| Option | Argument | Required| Default

memcap <memcap> NO memcap 102400
disable _defrag NONE NO OFF
max frag _len <max-frag-len> NO OFF
events <events> NO events [smb, co, cl]
reassemble _threshold <re-thresh> NO OFF

memcap = 1024-4194303 (kilobytes)

max-frag-len = 1514-65535

events = pseudo-event | event | [event-list]

pseudo-event = "none" | "all"

event-list = event | event ', event-list

event = "memcap” | "smb" | "co" | "cl"

re-thresh = 0-65535

Option explanations

memcap

71

Specifies the maximum amount of run-time memory that canlbeatked. Run-time memory includes any
memory allocated after configuration. Default is 100 MB.

disable _defrag
Tells the preprocessor not to do DCE/RPC defragmentatiefaddt is to do defragmentation.
max frag _len

Specifies the maximum fragment size that will be added to #feagmention module. If a fragment is
greater than this size, it is truncated before being add¢itdefragmentation module. Default is not set.

events

Specifies the classes of events to enable. (See Eventssfectim enumeration and explanation of events.)

memcap
Only one event. If the memcap is reached or exceeded, alert.
smb
Alert on events related to SMB processing.
co

Stands for connection-oriented DCE/RPC. Alert on everdsed to connection-oriented DCE/RPC
processing.

cl

Stands for connectionless DCE/RPC. Alert on events reltesbnnectionless DCE/RPC pro-
cessing. Defaults amnb, co andcl .

reassemble _threshold

Specifies a minimum number of bytes in the DCE/RPC desegitiemsand defragmentation buffers before
creating a reassembly packet to send to the detection enfiiieoption is useful in inline mode so as to
potentially catch an exploit early before full defragmeiatais done. A value of 0 supplied as an argument
to this option will, in effect, disable this option. Defaigtdisabled.

Option examples

memcap 30000

max_frag_len 16840

events none

events all

events smb

events co

events [co]

events [smb, co]

events [memcap, smb, co, cl]
reassemble_threshold 500

Configuration examples

preprocessor dcerpc2
preprocessor dcerpc2: memcap 500000

preprocessor dcerpc2: max_frag_len 16840, memcap 300000, events smb
preprocessor dcerpc2: memcap 50000, events [memcap, smb, c o, cl], max_frag_len 14440
preprocessor dcerpc2: disable_defrag, events [memcap, sm b]

preprocessor dcerpc2: reassemble_threshold 500
Default global configuration

preprocessor dcerpc2: memcap 102400, events [smb, co, cl]

Server Configuration

72

preprocessor dcerpc2_server

Thedcerpc2 _server
options. Thelefault

no default
configurati

ons can be specified. For alogrpc2 _server

configuration is optional. Alcerpc2 _server
andnet options are mutually exclusive. At most one default configion can be specified. If
configuration is specified, default values will be used fardéfault

defaults will be used. When processing DCE/RPC traffic ddiault

match. If anet configuration matches, it will override thiefault

Option syntax

configuration must start witdefault — or net

configuration. Zero or moreet

configuration, if non-required options are not specified, th

configuration is used if no net configurations

configuration. Anet configuration matches if the
packet’s server IP address matches an IP address or nefiesg@tithenet configuration. Thawet option supports
IPv6 addresses. Note that port and ip variables defineagbiiconf

CANNOT be used.

Option Argument | Required| Default
default NONE YES NONE
net <net> YES NONE
policy <policy> NO policy WinXP
detect <detect> NO detect [smb [139,445], tcp 135,
udp 135, rpc-over-http-server
593]
autodetect <detect> NO autodetect [tcp 1025:, udp 1025:,
rpc-over-http-server 1025:]
no_autodetect _http _proxy _ports NONE NO DISABLED (The preprocessor autodeted
on all proxy ports by default)
smb_invalid _shares <shares> NO NONE
smb_max_chain <max-chain> NO smb_max_chain 3
net =ip | T iplist T
ip-list =ip | ip ") ip-list
ip = ip-addr | ip-addr /' prefix | ip4-addr '/’ netmask
ip-addr = ip4-addr | ip6-addr
ip4-addr = a valid IPv4 address
ip6-addr = a valid IPv6 address (can be compressed)
prefix = a valid CIDR
netmask = a valid netmask
policy = "Win2000" | "Win2003" | "WinXP" | "WinVista" |
"Samba" | "Samba-3.0.22" | "Samba-3.0.20"
detect = "none" | detect-opt | [detect-list T
detect-list = detect-opt | detect-opt ', detect-list
detect-opt = transport | transport port-item |
transport [port-list]’
transport = "smb" | "tcp" | "udp" | "rpc-over-http-proxy" |
“rpc-over-http-server"
port-list = port-item | port-item '’ port-list
port-item = port | port-range
port-range = " port | port ' | port ' port
port = 0-65535
shares = share | [share-list
share-list = share | share ', share-list
share = word | ™ word ™ | ™ var-word ™
word = graphical ascii characters except ', ™ T T '$'
var-word = graphical ascii characters except '} ™ T T
max-chain = 0-255

Because the Snort main parser treats '$’ as the start of ablarand tries to expand it, shares with '$’ must be
enclosed quotes.

Option explanations

default

Specifies that this configuration is for the default serverfiguration.

73

net

Specifies that this configuration is an IP or net specific comdiion. The configuration will only apply to
the IP addresses and nets supplied as an argument.

policy
Specifies the target-based policy to use when processirfgudes "WinXP”.
detect

Specifies the DCE/RPC transport and server ports that sheuttbtected on for the transport. Defaults
are ports 139 and 445 for SMB, 135 for TCP and UDP, 593 for RP& BM TP server and 80 for RPC
over HTTP proxy.

autodetect

Specifies the DCE/RPC transport and server ports that thgrqaressor should attempt to autodetect on
for the transport. The autodetect ports are only queried ifletect transport/ports match the packet. The
order in which the preprocessor will attempt to autodeteititbe - TCP/UDP, RPC over HTTP server,
RPC over HTTP proxy and lastly SMB. Note that most dynamic IRFEC ports are above 1024 and ride
directly over TCP or UDP. It would be very uncommon to see SMBaaything other than ports 139 and
445, Defaults are 1025-65535 for TCP, UDP and RPC over HTT\RBse

no_autodetect _http _proxy _ports

By default, the preprocessor will always attempt to autedifor ports specified in the detect configuration
for rpc-over-http-proxy. This is because the proxy is likelweb server and the preprocessor should not
look at all web traffic. This option is useful if the RPC over FH proxy configured with the detect option
is only used to proxy DCE/RPC traffic. Default is to autodetatRPC over HTTP proxy detect ports.

smb_invalid _shares

Specifies SMB shares that the preprocessor should alertaznaftempt is made to connect to them via a
Tree Connect orTree Connect AndX . Defaultis empty.

smb_max_chain

Specifies the maximum amount of AndX command chaining thaligssved before an alert is generated.
Default maximum is 3 chained commands. A value of 0 disalblissaption.

Option examples

net 192.168.0.10

net 192.168.0.0/24

net [192.168.0.0/24]

net 192.168.0.0/255.255.255.0

net feab:45b3:abh92:8ac4:d322:007f.e5aa:7845
net feah:45b3:ah92:8ac4:d322:007f.e5aa:7845/128
net feah:45b3::/32

net [192.168.0.10, feab:45b3::/32]

net [192.168.0.0/24, feah:45b3:ab92:8ac4:d322:007f.e5 aa:7845]
policy Win2000

policy Samba-3.0.22

detect none

detect smb

detect [smb]

detect smb 445

detect [smb 445]

detect smb [139,445]

detect [smb [139,445]]

detect [smb, tcp]

detect [smb 139, tcp [135,2103]]

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver [593,6002:6004]]

74

autodetect none

autodetect tcp

autodetect [tcp]

autodetect tcp 2025:

autodetect [tcp 2025:]

autodetect tcp [2025:3001,3003:]
autodetect [tcp [2025:3001,3003:]]
autodetect [tcp, udp]

autodetect [tcp 2025:, udp 2025:]
autodetect [tcp 2025:, udp, rpc-over-http-server [1025:6 001,6005:]]
smb_invalid_shares private
smb_invalid_shares “private”
smb_invalid_shares "C$"
smb_invalid_shares [private, "C$"]
smb_invalid_shares ["private”, "C$"]
smb_max_chain 1

Configuration examples

preprocessor dcerpc2_server: \
default

preprocessor dcerpc2_server: \
default, policy Win2000

preprocessor dcerpc2_server: \
default, policy Win2000, detect [smb, tcp], autodetect tcp 1025;, \
smb_invalid_shares ['C$", "D$", "ADMIN$"]

preprocessor dcerpc2_server: net 10.4.10.0/24, policy Wi n2000

preprocessor dcerpc2_server: \
net [10.4.10.0/24 feab:45b3::/126], policy WinVista, sm b_max_chain 1

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, \
detect [smb, tcp, rpc-over-http-proxy 8081],
autodetect [tcp, rpc-over-http-proxy [1025:6001,6005:] 1\
smb_invalid_shares ['C$", "ADMIN$"], no_autodetect_htt p_proxy_ports

preprocessor dcerpc2_server: \
net [10.4.11.56,10.4.11.57], policy Samba, detect smb, au todetect none

Default server configuration

preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Completedcerpc2 default configuration

preprocessor dcerpc2: \
memcap 102400, events [smb, co, cl]

preprocessor dcerpc2_server: \
default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Events

The preprocessor uses GID 133 to register events.

Memcap events

75

SID | Description
1 | If the memory cap is reached and the preprocessor is configaraert.
SMB events
SID | Description
2 | Aninvalid NetBIOS Session Service type was specified in #eder. Valid types arédessage,

Request (only from client), Positive Response (only from server),Negative Response
(only from server)Retarget Response (only from server) andkeep Alive

An SMB message type was specified in the header. Either asegas made by the server or
response was given by the client.

The SMB id does not equajxffSMB . Note that since the preprocessor does not yet sup
SMB2, id of \xfeSMB s turned away before an eventable point is reached.

The word count of the command header is invalid. SMB commduade pretty specific word

counts and if the preprocessor sees a command with a word toatndoesn't jive with that
command, the preprocessor will alert.

Some commands require a minimum number of bytes after therzomd header. If a comman

requires this and the byte count is less than the minimumiredjbyte count for that command,

the preprocessor will alert.

Some commands, especially the commands from the SMB Corlennemtation require a data

format field that specifies the kind of data that will be comimext. Some commands require

specific format for the data. The preprocessor will aleté format is not that which is expected

for that command.

Many SMB commands have a field containing an offset from thygriseng of the SMB header to

where the data the command is carrying starts. If this offsét us before data that has alrea
been processed or after the end of payload, the preprocsikalert.

a

port

Some SMB commands, such &ansaction , have a field containing the total amount of data

to be transmitted. If this field is zero, the preprocessoralirt.

10

The preprocessor will alert if the NetBIOS Session Sengegth field contains a value less th
the size of an SMB header.

11

The preprocessor will alert if the remaining NetBIOS padkeigth is less than the size of th
SMB command header to be decoded.

12

The preprocessor will alert if the remaining NetBIOS padkeigth is less than the size of th
SMB command byte count specified in the command header.

13

The preprocessor will alert if the remaining NetBIOS padkeigth is less than the size of ti
SMB command data size specified in the command header.

14

The preprocessor will alert if the total data count specifiethe SMB command header is le
than the data size specified in the SMB command header. (@atal count must always b
greater than or equal to current data size.)

15

The preprocessor will alert if the total amount of data serat fransaction is greater than the to
data count specified in the SMB command header.

an

e

e

e

5S
e

tal

16

The preprocessor will alert if the byte count specified in B command header is less th
the data size specified in the SMB command. (The byte count ahays be greater than g
equal to the data size.)

AN

=

17

Some of the Core Protocol commands (from the initial SMB ienpéntation) require that th
byte count be some value greater than the data size exadiby.piieprocessor will alert if the
byte count minus a predetermined amount based on the SMB aoohia not equal to the dat

[ORALANY)

size.

76

18

FortheTree Connect command (and notthBee Connect AndX command), the preprocessor

has to queue the requests up and wait for a server responsgéetonihe whether or not an IP

share was successfully connected to (which is what the pecegsor is interested in). Unlike
D

the Tree Connect AndX response, there is no indication in thiee Connect response as t¢
whether the share is IPC or not. There should be under nolincahastances no more than a fe
pending tree connects at a time and the preprocessor willitlkis number is excessive.

19

After a client is done writing data using théite* commands, it issuesRead* command to
the server to tell it to send a response to the data it hasewrittn this case the preprocess

or

is concerned with the server response. Read* request contains the file id associated with a
named pipe instance that the preprocessor will ultimatehdghe data to. The server response,

however, does not contain this file id, so it need to be queutdthe request and dequeued with

the response. If multiplBead* requests are sent to the server, they are responded to indae
they were sent. There should be under normal circumstarece®one than a few pendiriRead*
requests at a time and the preprocessor will alert if this Imems excessive.

20

The preprocessor will alert if the number of chained comnsané single request is greater than

or equal to the configured amount (default is 3).

21

With AndX command chaining it is possible to chain multiSkssion Setup AndX commands

within the same request. There is, however, only one platiesrSMB header to return a login

handle (or Uid). Windows does not allow this behavior, hoerevamba does. This is anomalo
behavior and the preprocessor will alert if it happens.

22

With AndX command chaining it is possible to chain multipkee Connect AndX commands
within the same request. There is, however, only one platledrSMB header to return a trg
handle (or Tid). Windows does not allow this behavior, hogredamba does. This is anomalo
behavior and the preprocessor will alert if it happens.

23

When aSession Setup AndX request is sent to the server, the server responds (if teatg
successfully authenticates) which a user id or login han@les is used by the client in subs

guent requests to indicate that it has authenticatelchgaff AndX requestis sent by the client

to indicate it wants to end the session and invalidate thim lbgndle. With commands that a

(0]

us

us

D

15

chained after &ession Setup AndX request, the login handle returned by the server is used for

the subsequent chained commands. The combinatioSexs®on Setup AndX command with
a chained.ogoff AndX command, essentially logins in and logs off in the same rsigared is
anomalous behavior. The preprocessor will alert if it sbés t

24

A Tree Connect AndX command is used to connect to a share. Tiee Disconnect com-
mand is used to disconnect from that share. The combinafiarifeee Connect AndX com-
mand with a chainedree Disconnect command, essentially connects to a share and dis
nects from the same share in the same request and is anorbalwagor. The preprocessor wi
alert if it sees this.

con-

25 | An Open AndXorNt Create AndX command is used to open/create a file or named pipe. (The
preprocessor is only interested in named pipes as this iss@E/RPC requests are written ta.)
TheClose command is used to close that file or named pipe. The combimafiaOpen AndX
orNt Create AndX command with a chainedlose command, essentially opens and closes|the
named pipe in the same request and is anomalous behavioprépecessor will alert if it sees
this.

26 | The preprocessor will alert if it sees any of the invalid SMiages configured. It looks for a
Tree Connect orTree Connect AndX to the share.

Connection-oriented DCE/RPC events
SID | Description

27 | The preprocessor will alert if the connection-oriented DRIEC major version contained in the
header is not equal to 5.

28 | The preprocessor will alert if the connection-oriented BREC minor version contained in the
header is not equal to 0.

77

29

The preprocessor will alert if the connection-oriented DRIEC PDU type contained in th
header is not a valid PDU type.

e

30

The preprocessor will alert if the fragment length definethmheader is less than the size of the

31

32

header.

The preprocessor will alert if the remaining fragment lénig less than the remaining packet
size.

The preprocessor will alert if in Bind or Alter Context request, there are no context items
specified.

33

The preprocessor will alertifinBind orAlter Context request, there are no transfer synta
to go with the requested interface.

es

34

The preprocessor will alert if a non-last fragment is lessitthe size