
SNORTR© Users Manual
2.9.0

The Snort Project

February 28, 2011

Copyright c©1998-2003 Martin Roesch

Copyright c©2001-2003 Chris Green

Copyright c©2003-2011 Sourcefire, Inc.

1

Contents

1 Snort Overview 9

1.1 Getting Started 9

1.2 Sniffer Mode 9

1.3 Packet Logger Mode 10

1.4 Network Intrusion Detection System Mode 11

1.4.1 NIDS Mode Output Options 11

1.4.2 Understanding Standard Alert Output 12

1.4.3 High Performance Configuration 12

1.4.4 Changing Alert Order 13

1.5 Packet Acquisition 13

1.5.1 Configuration 13

1.5.2 PCAP 14

1.5.3 AFPACKET 15

1.5.4 NFQ 15

1.5.5 IPQ 16

1.5.6 IPFW 16

1.5.7 Dump 16

1.5.8 Statistics Changes 17

1.6 Reading Pcaps 17

1.6.1 Command line arguments 17

1.6.2 Examples 17

1.7 Basic Output 19

1.7.1 Timing Statistics 19

1.7.2 Packet I/O Totals 19

1.7.3 Protocol Statistics 20

1.7.4 Actions, Limits, and Verdicts 21

1.8 Tunneling Protocol Support 22

1.8.1 Multiple Encapsulations 22

1.8.2 Logging 22

1.9 Miscellaneous 23

2

1.9.1 Running Snort as a Daemon 23

1.9.2 Running in Rule Stub Creation Mode 23

1.9.3 Obfuscating IP Address Printouts 24

1.9.4 Specifying Multiple-Instance Identifiers 24

1.9.5 Snort Modes 24

1.10 More Information 25

2 Configuring Snort 26

2.1 Includes 26

2.1.1 Format 26

2.1.2 Variables 26

2.1.3 Config 29

2.2 Preprocessors 37

2.2.1 Frag3 38

2.2.2 Stream5 41

2.2.3 sfPortscan 46

2.2.4 RPC Decode 51

2.2.5 Performance Monitor 52

2.2.6 HTTP Inspect 55

2.2.7 SMTP Preprocessor 66

2.2.8 FTP/Telnet Preprocessor 69

2.2.9 SSH 76

2.2.10 DNS 77

2.2.11 SSL/TLS 78

2.2.12 ARP Spoof Preprocessor 80

2.2.13 DCE/RPC 2 Preprocessor 80

2.2.14 Sensitive Data Preprocessor 94

2.2.15 Normalizer 96

2.3 Decoder and Preprocessor Rules 99

2.3.1 Configuring 100

2.3.2 Reverting to original behavior 100

2.4 Event Processing 101

2.4.1 Rate Filtering 101

2.4.2 Event Filtering 103

2.4.3 Event Suppression 105

2.4.4 Event Logging 106

2.5 Performance Profiling 107

2.5.1 Rule Profiling 107

2.5.2 Preprocessor Profiling 108

3

2.5.3 Packet Performance Monitoring (PPM) 111

2.6 Output Modules 114

2.6.1 alertsyslog . 114

2.6.2 alertfast . 116

2.6.3 alertfull . 116

2.6.4 alertunixsock .117

2.6.5 logtcpdump . 117

2.6.6 database 117

2.6.7 csv 119

2.6.8 unified 120

2.6.9 unified 2 120

2.6.10 alertprelude . 121

2.6.11 log null 121

2.6.12 alertarubaaction . 122

2.6.13 Log Limits 122

2.7 Host Attribute Table 123

2.7.1 Configuration Format 123

2.7.2 Attribute Table File Format 123

2.7.3 Attribute Table Example 125

2.8 Dynamic Modules 127

2.8.1 Format 127

2.8.2 Directives 127

2.9 Reloading a Snort Configuration 127

2.9.1 Enabling support 128

2.9.2 Reloading a configuration 128

2.9.3 Non-reloadable configuration options 128

2.10 Multiple Configurations 130

2.10.1 Creating Multiple Configurations 130

2.10.2 Configuration Specific Elements 130

2.10.3 How Configuration is applied? 132

2.11 Active Response 132

2.11.1 Enabling Active Response 132

2.11.2 Configure Sniping 133

2.11.3 Flexresp 133

2.11.4 React 133

2.11.5 Rule Actions 134

4

3 Writing Snort Rules 135

3.1 The Basics 135

3.2 Rules Headers 135

3.2.1 Rule Actions 135

3.2.2 Protocols 136

3.2.3 IP Addresses 136

3.2.4 Port Numbers 137

3.2.5 The Direction Operator 137

3.2.6 Activate/Dynamic Rules 138

3.3 Rule Options 138

3.4 General Rule Options 139

3.4.1 msg 139

3.4.2 reference 139

3.4.3 gid 140

3.4.4 sid 140

3.4.5 rev 141

3.4.6 classtype 141

3.4.7 priority 142

3.4.8 metadata 143

3.4.9 General Rule Quick Reference 143

3.5 Payload Detection Rule Options 144

3.5.1 content 144

3.5.2 nocase 145

3.5.3 rawbytes 145

3.5.4 depth 146

3.5.5 offset 146

3.5.6 distance 147

3.5.7 within 147

3.5.8 httpclient body . 148

3.5.9 httpcookie . 148

3.5.10 httpraw cookie . 149

3.5.11 httpheader . 149

3.5.12 httpraw header . 150

3.5.13 httpmethod . 150

3.5.14 httpuri . 150

3.5.15 httpraw uri . 151

3.5.16 httpstat code . 151

3.5.17 httpstatmsg . 152

3.5.18 httpencode . 152

5

3.5.19 fastpattern .153

3.5.20 uricontent 154

3.5.21 urilen 155

3.5.22 isdataat 156

3.5.23 pcre 156

3.5.24 filedata . 157

3.5.25 base64decode . 158

3.5.26 base64data . 159

3.5.27 bytetest . 160

3.5.28 bytejump . 161

3.5.29 byteextract .162

3.5.30 ftpbounce 163

3.5.31 asn1 163

3.5.32 cvs 164

3.5.33 dceiface . 164

3.5.34 dceopnum . 164

3.5.35 dcestub data . 164

3.5.36 sslversion .164

3.5.37 sslstate .164

3.5.38 Payload Detection Quick Reference 164

3.6 Non-Payload Detection Rule Options 165

3.6.1 fragoffset 165

3.6.2 ttl 165

3.6.3 tos 166

3.6.4 id 166

3.6.5 ipopts 167

3.6.6 fragbits 167

3.6.7 dsize 168

3.6.8 flags 168

3.6.9 flow 169

3.6.10 flowbits 169

3.6.11 seq 170

3.6.12 ack 170

3.6.13 window 170

3.6.14 itype 171

3.6.15 icode 171

3.6.16 icmpid . 171

3.6.17 icmpseq . 171

3.6.18 rpc 172

6

3.6.19 ipproto .172

3.6.20 sameip 172

3.6.21 streamreassemble . 173

3.6.22 streamsize . 173

3.6.23 Non-Payload Detection Quick Reference 173

3.7 Post-Detection Rule Options 174

3.7.1 logto 174

3.7.2 session 174

3.7.3 resp 175

3.7.4 react 175

3.7.5 tag 175

3.7.6 activates 176

3.7.7 activatedby . 176

3.7.8 count 176

3.7.9 replace 176

3.7.10 detectionfilter . 176

3.7.11 Post-Detection Quick Reference 177

3.8 Rule Thresholds 177

3.9 Writing Good Rules 178

3.9.1 Content Matching 178

3.9.2 Catch the Vulnerability, Not the Exploit 178

3.9.3 Catch the Oddities of the Protocol in the Rule 178

3.9.4 Optimizing Rules 179

3.9.5 Testing Numerical Values 180

4 Dynamic Modules 183

4.1 Data Structures 183

4.1.1 DynamicPluginMeta 183

4.1.2 DynamicPreprocessorData 183

4.1.3 DynamicEngineData 184

4.1.4 SFSnortPacket 184

4.1.5 Dynamic Rules 184

4.2 Required Functions 189

4.2.1 Preprocessors 190

4.2.2 Detection Engine 190

4.2.3 Rules 191

4.3 Examples 191

4.3.1 Preprocessor Example 191

4.3.2 Rules 193

7

5 Snort Development 196

5.1 Submitting Patches 196

5.2 Snort Data Flow 196

5.2.1 Preprocessors 196

5.2.2 Detection Plugins 196

5.2.3 Output Plugins 196

5.3 The Snort Team 197

8

Chapter 1

Snort Overview

This manual is based onWriting Snort Rulesby Martin Roesch and further work from Chris Green<cmg@snort.org>.
It was then maintained by Brian Caswell<bmc@snort.org> and now is maintained by the Snort Team. If you have a
better way to say something or find that something in the documentation is outdated, drop us a line and we will update
it. If you would like to submit patches for this document, youcan find the latest version of the documentation in LATEX
format in the Snort CVS repository at/doc/snort_manual.tex . Small documentation updates are the easiest way to
help out the Snort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of command line options to play with, and it’s not always obvious
which ones go together well. This file aims to make using Snorteasier for new users.

Before we proceed, there are a few basic concepts you should understand about Snort. Snort can be configured to run
in three modes:

• Sniffer mode,which simply reads the packets off of the network and displays them for you in a continuous
stream on the console (screen).

• Packet Logger mode,which logs the packets to disk.

• Network Intrusion Detection System (NIDS) mode,the most complex and configurable configuration, which
allows Snort to analyze network traffic for matches against auser-defined rule set and performs several actions
based upon what it sees.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to print out the TCP/IP packet headers to the screen (i.e. sniffer mode),
try this:

./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If you want to see the
application data in transit, try the following:

./snort -vd

This instructs Snort to display the packet data as well as theheaders. If you want an even more descriptive display,
showing the data link layer headers, do this:

9

./snort -vde

(As an aside, these switches may be divided up or smashed together in any combination. The last command could also
be typed out as:

./snort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you need to specify a
logging directory and Snort will automatically know to go into packet logger mode:

./snort -dev -l ./log

Of course, this assumes you have a directory namedlog in the current directory. If you don’t, Snort will exit with
an error message. When Snort runs in this mode, it collects every packet it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -l switch, you may notice that Snort sometimes uses the address of the remote computer
as the directory in which it places packets and sometimes it uses the local host address. In order to log relative to the
home network, you need to tell Snort which network is the homenetwork:

./snort -dev -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as application data into the
directory./log , and you want to log the packets relative to the 192.168.1.0 class C network. All incoming packets
will be recorded into subdirectories of the log directory, with the directory names being based on the address of the
remote (non-192.168.1) host.

△! NOTE
Note that if both the source and destination hosts are on the home network, they are logged to a directory
with a name based on the higher of the two port numbers or, in the case of a tie, the source address.

If you’re on a high speed network or you want to log the packetsinto a more compact form for later analysis, you
should consider logging in binary mode. Binary mode logs thepackets in tcpdump format to a single binary file in the
logging directory:

./snort -l ./log -b

Note the command line changes here. We don’t need to specify ahome network any longer because binary mode
logs everything into a single file, which eliminates the needto tell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or specify the -d or -e switches because in binary mode the entire
packet is logged, not just sections of it. All you really needto do to place Snort into logger mode is to specify a logging
directory at the command line using the -l switch—the -b binary logging switch merely provides a modifier that tells
Snort to log the packets in something other than the default output format of plain ASCII text.

Once the packets have been logged to the binary file, you can read the packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or Ethereal). Snort can also read the packets back by using the
-r switch, which puts it into playback mode. Packets from anytcpdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run a binary log file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

10

./snort -dv -r packet.log

You can manipulate the data in the file in a number of ways through Snort’s packet logging and intrusion detection
modes, as well as with the BPF interface that’s available from the command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPF filter at the command line and Snort will only see the
ICMP packets in the file:

./snort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snort and tcpdump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) mode sothat you don’t record every single packet sent down
the wire, try this:

./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf

wheresnort.conf is the name of your snort configuration file. This will apply the rules configured in thesnort.conf
file to each packet to decide if an action based upon the rule type in the file should be taken. If you don’t specify an
output directory for the program, it will default to/var/log/snort .

One thing to note about the last command line is that if Snort is going to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake of speed. The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It’s also not necessary to record the data link headers for most applications, so you can usually omit the -e switch, too.

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf

This will configure Snort to run in its most basic NIDS form, logging packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory structure (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort in NIDS mode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alerts. The full alert mechanism prints out the alert message in
addition to the full packet headers. There are several otheralert output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are seven alertmodes available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modes are accessed with the -A command line switch. These
options are:

Option Description
-A fast Fast alert mode. Writes the alert in a simple format with a timestamp, alert message, source and

destination IPs/ports.
-A full Full alert mode. This is the default alert mode and will be used automatically if you do not specify

a mode.
-A unsock Sends alerts to a UNIX socket that another program can listenon.
-A none Turns off alerting.
-A console Sends “fast-style” alerts to the console (screen).
-A cmg Generates “cmg style” alerts.

11

Packets can be logged to their default decoded ASCII format or to a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N command line switch.

For output modes available through the configuration file, see Section 2.6.

△! NOTE
Command line logging options override any output options specified in the configuration file. This allows
debugging of configuration issues quickly via the command line.

To send alerts to syslog, use the -s switch. The default facilities for the syslog alerting mechanism are LOGAUTHPRIV
and LOGALERT. If you want to configure other facilities for syslog output, use the output plugin directives in
snort.conf. See Section 2.6.1 for more details on configuring syslog output.

For example, use the following command line to log to default(decoded ASCII) facility and send alerts to syslog:

./snort -c snort.conf -l ./log -h 192.168.1.0/24 -s

As another example, use the following command line to log to the default facility in /var/log/snort and send alerts to a
fast alert file:

./snort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually look like the following:

[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user what component of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. In this case, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred to as Signature ID). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directly into the rules with thesid option. In this case,56 represents a
T/TCP event.

The third number is the revision ID. This number is primarilyused when writing signatures, as each rendition of the
rule should increment this number with therev option.

1.4.3 High Performance Configuration

If you want Snort to gofast(like keep up with a 1000 Mbps connection), you need to use unified logging and a unified
log reader such asbarnyard. This allows Snort to log alerts in a binary form as fast as possible while another program
performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsed, but still somewhat fast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce minimal alerts. For example:

./snort -b -A fast -c snort.conf

12

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packets may not be appropriate for all installations. The Pass rules
are applied first, then the Drop rules, then the Alert rules and finally, Log rules are applied.

△! NOTE
Sometimes an errant pass rule could cause alerts to not show up, in which case you can change the default
ordering to allow Alert rules to be applied before Pass rules. For more information, please refer to the
--alert-before-pass option.

Several command line options are available to change the order in which rule actions are taken.

• --alert-before-pass option forces alert rules to take affect in favor of a pass rule.

• --treat-drop-as-alert causes drop and reject rules and any associated alerts to be logged as alerts, rather
then the normal action. This allows use of an inline policy with passive/IDS mode. The sdrop rules are not
loaded.

• --process-all-events option causes Snort to process every event associated with apacket, while taking the
actions based on the rules ordering. Without this option (default case), only the events for the first action based
on rules ordering are processed.

△! NOTE
Pass rules are special cases here, in that the event processing is terminated when a pass rule is encountered,
regardless of the use of--process-all-events .

1.5 Packet Acquisition

Snort 2.9 introduces the DAQ, or Data Acquisition library, for packet I/O. The DAQ replaces direct calls to PCAP
functions with an abstraction layer that facilitates operation on a variety of hardware and software interfaces without
requiring changes to Snort. It is possible to select the DAQ type and mode when invoking Snort to perform PCAP
readback or inline operation, etc.

1.5.1 Configuration

Assuming that you did not disable static modules or change the default DAQ type, you can run Snort just as you always
did for file readback or sniffing an interface. However, you can select and configure the DAQ when Snort is invoked
as follows:

./snort \
[--daq <type>] \
[--daq-mode <mode>] \
[--daq-dir <dir>] \
[--daq-var <var>]

config daq: <type>
config daq_dir: <dir>
config daq_var: <var>
config daq_mode: <mode>

<type> ::= pcap | afpacket | dump | nfq | ipq | ipfw

13

<mode> ::= read-file | passive | inline
<var> ::= arbitrary <name>=<value> passed to DAQ
<dir> ::= path where to look for DAQ module so’s

The DAQ type, mode, variable, and directory may be specified either via the command line or in the conf file. You
may include as many variables and directories as needed by repeating the arg / config. DAQ type may be specified at
most once in the conf and once on the command line; if configured in both places, the command line overrides the
conf.

If the mode is not set explicitly, -Q will force it to inline, and if that hasn’t been set, -r will force it to read-file, and
if that hasn’t been set, the mode defaults to passive. Also, -Q and –daq-mode inline are allowed, since there is no
conflict, but -Q and any other DAQ mode will cause a fatal errorat start-up.

Note that if Snort finds multiple versions of a given library,the most recent version is selected. This applies to static
and dynamic versions of the same library.

./snort [--daq-list <dir>]

The above command searches the specified directory for DAQ modules and prints type, version, and attributes of each.
This feature is not available in the conf.

1.5.2 PCAP

pcap is the default DAQ. if snort is run w/o any DAQ arguments,it will operate as it always did using this module.
These are equivalent:

./snort -i <device>

./snort -r <file>

./snort --daq pcap --daq-mode passive -i <device>

./snort --daq pcap --daq-mode read-file -r <file>

You can specify the buffer size pcap uses with:

./snort --daq pcap --daq-var buffer_size=<#bytes>

Note that the pcap DAQ does not count filtered packets.

MMAPed pcap

On Linux, a modified version of libpcap is available that implements a shared memory ring buffer. Phil Woods
(cpw@lanl.gov) is the current maintainer of the libpcap implementation of the shared memory ring buffer. The shared
memory ring buffer libpcap can be downloaded from his website athttp://public.lanl.gov/cpw/ .

Instead of the normal mechanism of copying the packets from kernel memory into userland memory, by using a shared
memory ring buffer, libpcap is able to queue packets into a shared buffer that Snort is able to read directly. This change
speeds up Snort by limiting the number of times the packet is copied before Snort gets to perform its detection upon
it.

Once Snort linked against the shared memory libpcap, enabling the ring buffer is done via setting the environment
variablePCAPFRAMES. PCAPFRAMESis the size of the ring buffer. According to Phil, the maximumsize is
32768, as this appears to be the maximum number of iovecs the kernel can handle. By usingPCAPFRAMES=max,
libpcap will automatically use the most frames possible. OnEthernet, this ends up being 1530 bytes per frame, for a
total of around 52 Mbytes of memory for the ring buffer alone.

14

1.5.3 AFPACKET

afpacket functions similar to the memory mapped pcap DAQ butno external library is required:

./snort --daq afpacket -i <device>
[--daq-var buffer_size_mb=<#MB>]
[--daq-var debug]

If you want to run afpacket in inline mode, you must set deviceto one or more interface pairs, where each member of
a pair is separated by a single colon and each pair is separated by a double colon like this:

eth0:eth1

or this:

eth0:eth1::eth2:eth3

By default, the afpacket DAQ allocates 128MB for packet memory. You can change this with:

--daq-var buffer_size_mb=<#MB>

Note that the total allocated is actually higher, here’s why. Assuming the default packet memory with a snaplen of
1518, the numbers break down like this:

1. The frame size is 1518 (snaplen) + the size of the AFPacket header (66 bytes) = 1584 bytes.

2. The number of frames is 128 MB / 1518 = 84733.

3. The smallest block size that can fit at least one frame is 4 KB = 4096 bytes @ 2 frames per block.

4. As a result, we need 84733 / 2 = 42366 blocks.

5. Actual memory allocated is 42366 * 4 KB = 165.5 MB.

1.5.4 NFQ

NFQ is the new and improved way to process iptables packets:

./snort --daq nfq \
[--daq-var device=<dev>] \
[--daq-var proto=<proto>] \
[--daq-var queue=<qid>] \

[--daq-var queue_len=<qlen>]

<dev> ::= ip | eth0, etc; default is IP injection
<proto> ::= ip4 | ip6 | ip*; default is ip4
<qid> ::= 0..65535; default is 0
<qlen> ::= 0..65535; default is 0

Notes on iptables are given below.

15

1.5.5 IPQ

IPQ is the old way to process iptables packets. It replaces the inline version available in pre-2.9 versions built with
this:

./configure --enable-inline / -DGIDS

Start the IPQ DAQ as follows:

./snort --daq ipq \
[--daq-var device=<dev>] \
[--daq-var proto=<proto>] \

<dev> ::= ip | eth0, etc; default is IP injection
<proto> ::= ip4 | ip6; default is ip4

Notes on iptables are given below.

1.5.6 IPFW

IPFW is available for BSD systems. It replaces the inline version available in pre-2.9 versions built with this:

./configure --enable-ipfw / -DGIDS -DIPFW

This command line argument is no longer supported:

./snort -J <port#>

Instead, start Snort like this:

./snort --daq ipfw [--daq-var port=<port>]

<port> ::= 1..65535; default is 8000

* IPFW only supports ip4 traffic.

1.5.7 Dump

The dump DAQ allows you to test the various inline mode features available in 2.9 Snort like injection and normaliza-
tion.

./snort -i <device> --daq dump

./snort -r <pcap> --daq dump

By default a file named inline-out.pcap will be created containing all packets that passed through or were generated
by snort. You can optionally specify a different name.

./snort --daq dump --daq-var file=<name>

dump uses the pcap daq for packet acquisition. It therefore does not count filtered packets.

Note that the dump DAQ inline mode is not an actual inline mode. Furthermore, you will probably want to have the
pcap DAQ acquire in another mode like this:

./snort -r <pcap> -Q --daq dump --daq-var load-mode=read-f ile

./snort -i <device> -Q --daq dump --daq-var load-mode=pass ive

16

1.5.8 Statistics Changes

The Packet Wire Totals and Action Stats sections of Snort’s output include additional fields:

• Filtered count of packets filtered out and not handed to Snort for analysis.

• Injected packets Snort generated and sent, eg TCP resets.

• Allow packets Snort analyzed and did not take action on.

• Block packets Snort did not forward, eg due to a block rule.

• Replace packets Snort modified.

• Whitelist packets that caused Snort to allow a flow to pass w/o inspection by any analysis program.

• Blacklist packets that caused Snort to block a flow from passing.

• Ignore packets that caused Snort to allow a flow to pass w/o inspection by this instance of Snort.

The action stats show ”blocked” packets instead of ”dropped” packets to avoid confusion between dropped packets
(those Snort didn’t actually see) and blocked packets (those Snort did not allow to pass).

1.6 Reading Pcaps

Instead of having Snort listen on an interface, you can give it a packet capture to read. Snort will read and analyze the
packets as if they came off the wire. This can be useful for testing and debugging Snort.

1.6.1 Command line arguments

Any of the below can be specified multiple times on the commandline (-r included) and in addition to other Snort
command line options. Note, however, that specifying--pcap-reset and--pcap-show multiple times has the same
effect as specifying them once.

Option Description
-r <file> Read a single pcap.
--pcap-single=<file> Same as -r. Added for completeness.
--pcap-file=<file> File that contains a list of pcaps to read. Can specify path topcap or directory to

recurse to get pcaps.
--pcap-list="<list>" A space separated list of pcaps to read.
--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ASCII order.
--pcap-filter=<filter> Shell style filter to apply when getting pcaps from file or directory. This fil-

ter will apply to any--pcap-file or --pcap-dir arguments following. Use
--pcap-no-filter to delete filter for following--pcap-file or --pcap-dir
arguments or specify--pcap-filter again to forget previous filter and to apply
to following --pcap-file or --pcap-dir arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory.
--pcap-reset If reading multiple pcaps, reset snort to post-configuration state before reading

next pcap. The default, i.e. without this option, is not to reset state.
--pcap-show Print a line saying what pcap is currently being read.

1.6.2 Examples

Read a single pcap

$ snort -r foo.pcap
$ snort --pcap-single=foo.pcap

17

Read pcaps from a file

$ cat foo.txt
foo1.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-file=foo.txt

This will read foo1.pcap, foo2.pcap and all files under /home/foo/pcaps. Note that Snort will not try to determine
whether the files under that directory are really pcap files ornot.

Read pcaps from a command line list

$ snort --pcap-list="foo1.pcap foo2.pcap foo3.pcap"

This will read foo1.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory

$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /home/foo/pcaps.

Using filters

$ cat foo.txt
foo1.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt
$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pc aps

The above will only include files that match the shell pattern”*.pcap”, in other words, any file ending in ”.pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps

In the above, the first filter ”*.pcap” will only be applied to the pcaps in the file ”foo.txt” (and any directories that are
recursed in that file). The addition of the second filter ”*.cap” will cause the first filter to be forgotten and then applied
to the directory /home/foo/pcaps, so only files ending in ”.cap” will be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=/home/foo/pcaps

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcaps will be included.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=/home/foo/pcaps \
> --pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps2

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcaps will be included, then the filter ”*.cap” will be applied
to files found under /home/foo/pcaps2.

18

Resetting state

$ snort --pcap-dir=/home/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foo/pcaps, but after each pcap is read, Snort will be reset to
a post-configuration state, meaning all buffers will be flushed, statistics reset, etc. For each pcap, it will be like Snort
is seeing traffic for the first time.

Printing the pcap

$ snort --pcap-dir=/home/foo/pcaps --pcap-show

The above example will read all of the files under /home/foo/pcaps and will print a line indicating which pcap is
currently being read.

1.7 Basic Output

Snort does a lot of work and outputs some useful statistics when it is done. Many of these are self-explanatory. The
others are summarized below. This does not include all possible output data, just the basics.

1.7.1 Timing Statistics

This section provides basic timing statistics. It includestotal seconds and packets as well as packet processing rates.
The rates are based on whole seconds, minutes, etc. and only shown when non-zero.

Example:

=== ============================
Run time for packet processing was 175.856509 seconds
Snort processed 3716022 packets.
Snort ran for 0 days 0 hours 2 minutes 55 seconds

Pkts/min: 1858011
Pkts/sec: 21234

=== ============================

1.7.2 Packet I/O Totals

This section shows basic packet acquisition and injection peg counts obtained from the DAQ. If you are reading pcaps,
the totals are for all pcaps combined, unless you use –pcap-reset, in which case it is shown per pcap.

• Outstanding indicates how many packets are buffered awaiting processing. The way this is counted varies per
DAQ so the DAQ documentation should be consulted for more info.

• Filtered packets are not shown for pcap DAQs.

• Injected packets are the result of active response which canbe configured for inline or passive modes.

Example:

=== ============================
Packet I/O Totals:

Received: 3716022
Analyzed: 3716022 (100.000%)

19

Dropped: 0 (0.000%)
Filtered: 0 (0.000%)

Outstanding: 0 (0.000%)
Injected: 0

=== ============================

1.7.3 Protocol Statistics

Traffic for all the protocols decoded by Snort is summarized in the breakdown section. This traffic includes internal
”pseudo-packets” if preprocessors such as frag3 and stream5 are enabled so the total may be greater than the number
of analyzed packets in the packet I/O section.

• Disc counts are discards due to basic encoding integrity flaws that prevents Snort from decoding the packet.

• Other includes packets that contained an encapsulation that Snort doesn’t decode.

• S5 G 1/2 is the number of client/server sessions stream5 flushed due to cache limit, session timeout, session
reset.

Example:

=== ============================
Breakdown by protocol (includes rebuilt packets):

Eth: 3722347 (100.000%)
VLAN: 0 (0.000%)

IP4: 1782394 (47.884%)
Frag: 3839 (0.103%)
ICMP: 38860 (1.044%)

UDP: 137162 (3.685%)
TCP: 1619621 (43.511%)
IP6: 1781159 (47.850%)

IP6 Ext: 1787327 (48.016%)
IP6 Opts: 6168 (0.166%)

Frag6: 3839 (0.103%)
ICMP6: 1650 (0.044%)

UDP6: 140446 (3.773%)
TCP6: 1619633 (43.511%)

Teredo: 18 (0.000%)
ICMP-IP: 0 (0.000%)

EAPOL: 0 (0.000%)
IP4/IP4: 0 (0.000%)
IP4/IP6: 0 (0.000%)
IP6/IP4: 0 (0.000%)
IP6/IP6: 0 (0.000%)

GRE: 202 (0.005%)
GRE Eth: 0 (0.000%)

GRE VLAN: 0 (0.000%)
GRE IP4: 0 (0.000%)
GRE IP6: 0 (0.000%)

GRE IP6 Ext: 0 (0.000%)
GRE PPTP: 202 (0.005%)

GRE ARP: 0 (0.000%)
GRE IPX: 0 (0.000%)

GRE Loop: 0 (0.000%)
MPLS: 0 (0.000%)

ARP: 104840 (2.817%)

20

IPX: 60 (0.002%)
Eth Loop: 0 (0.000%)
Eth Disc: 0 (0.000%)
IP4 Disc: 0 (0.000%)
IP6 Disc: 0 (0.000%)
TCP Disc: 0 (0.000%)
UDP Disc: 1385 (0.037%)

ICMP Disc: 0 (0.000%)
All Discard: 1385 (0.037%)

Other: 57876 (1.555%)
Bad Chk Sum: 32135 (0.863%)

Bad TTL: 0 (0.000%)
S5 G 1: 1494 (0.040%)
S5 G 2: 1654 (0.044%)

Total: 3722347
=== ============================

1.7.4 Actions, Limits, and Verdicts

Action and verdict counts show what Snort did with the packets it analyzed. This information is only output in IDS
mode (when snort is run with the-c <conf> option).

• Alerts is the number of activate, alert, and block actions processed as determined by the rule actions. Here block
includes block, drop, and reject actions.

Limits arise due to real world constraints on processing time and available memory. These indicate potential actions
that did not happen:

• Match Limit counts rule matches were not processed due to theconfig detection: max queue events
setting. The default is 5.

• Queue Limit counts events couldn’t be stored in the event queue due to theconfig event queue: max queue
setting. The default is 8.

• Log Limit counts events were not alerted due to theconfig event queue: log setting. The default is 3.

• Event Limit counts events not alerted due toevent filter limits.

Verdicts are rendered by Snort on each packet:

• Allow = packets Snort analyzed and did not take action on.

• Block = packets Snort did not forward, eg due to a block rule. ”Block” is used instead of ”Drop” to avoid
confusion between dropped packets (those Snort didn’t actually see) and blocked packets (those Snort did not
allow to pass).

• Replace = packets Snort modified, for example, due to normalization or replace rules. This can only happen in
inline mode with a compatible DAQ.

• Whitelist = packets that caused Snort to allow a flow to pass w/o inspection by any analysis program. Like
blacklist, this is done by the DAQ or by Snort on subsequent packets.

• Blacklist = packets that caused Snort to block a flow from passing. This is the case when a block TCP rule fires.
If the DAQ supports this in hardware, no further packets willbe seen by Snort for that session. If not, snort will
block each packet and this count will be higher.

• Ignore = packets that caused Snort to allow a flow to pass w/o inspection by this instance of Snort. Like blacklist,
this is done by the DAQ or by Snort on subsequent packets.

21

Example:

=== ============================
Action Stats:

Alerts: 0 (0.000%)
Logged: 0 (0.000%)
Passed: 0 (0.000%)

Match Limit: 0
Queue Limit: 0

Log Limit: 0
Event Limit: 0
Verdicts:

Allow: 3716022 (100.000%)
Block: 0 (0.000%)

Replace: 0 (0.000%)
Whitelist: 0 (0.000%)
Blacklist: 0 (0.000%)

Ignore: 0 (0.000%)
=== ============================

1.8 Tunneling Protocol Support

Snort supports decoding of GRE, IP in IP and PPTP. To enable support, an extra configuration option is necessary:

$./configure --enable-gre

To enable IPv6 support, one still needs to use the configuration option:

$./configure --enable-ipv6

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scenarios such as

Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or

Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is logged, e.g.

Eth IP1 GRE IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

22

and

Eth IP1 IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

△! NOTE
Decoding of PPTP, which utilizes GRE and PPP, is not currently supported on architectures that require word
alignment such as SPARC.

1.9 Miscellaneous

1.9.1 Running Snort as a Daemon

If you want to run Snort as a daemon, you can the add -D switch toany combination described in the previous sections.
Please notice that if you want to be able to restart Snort by sending a SIGHUP signal to the daemon, youmustspecify
the full path to the Snort binary when you start it, for example:

/usr/local/bin/snort -d -h 192.168.1.0/24 \
-l /var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

Snort PID File

When Snort is run as a daemon , the daemon creates a PID file in the log directory. In Snort 2.6, the--pid-path
command line switch causes Snort to write the PID file in the directory specified.

Additionally, the--create-pidfile switch can be used to force creation of a PID file even when not running in
daemon mode.

The PID file will be locked so that other snort processes cannot start. Use the--nolock-pidfile switch to not lock
the PID file.

1.9.2 Running in Rule Stub Creation Mode

If you need to dump the shared object rules stub to a directory, you might need to use the –dump-dynamic-rules option.
These rule stub files are used in conjunction with the shared object rules. The path can be relative or absolute.

/usr/local/bin/snort -c /usr/local/etc/snort.conf \
--dump-dynamic-rules=/tmp

This path can also be configured in the snort.conf using the config option dump-dynamic-rules-path as follows:

config dump-dynamic-rules-path: /tmp/sorules

The path configured by command line has precedence over the one configured using dump-dynamic-rules-path.

23

/usr/local/bin/snort -c /usr/local/etc/snort.conf \
--dump-dynamic-rules

snort.conf:
config dump-dynamic-rules-path: /tmp/sorules

In the above mentioned scenario the dump path is set to /tmp/sorules.

1.9.3 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, you might want to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if you don’t want people on the mailing list to know the IP
addresses involved. You can also combine the -O switch with the -h switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who sees the address of the attacking host. For example, you
could use the following command to read the packets from a logfile and dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

./snort -d -v -r snort.log -O -h 192.168.1.0/24

1.9.4 Specifying Multiple-Instance Identifiers

In Snort v2.4, the-G command line option was added that specifies an instance identifier for the event logs. This option
can be used when running multiple instances of snort, eitheron different CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specified to generate unique event IDs. Users can specify either a
decimal value (-G 1) or hex value preceded by 0x (-G 0x11). This is also supported via a long option--logid .

1.9.5 Snort Modes

Snort can operate in three different modes namely tap (passive), inline, and inline-test. Snort policies can be configured
in these three modes too.

Explanation of Modes

• Inline

When Snort is in Inline mode, it acts as an IPS allowing drop rules to trigger. Snort can be configured to run in
inline mode using the command line argument -Q and snort config optionpolicy mode as follows:

snort -Q
config policy_mode:inline

• Passive

When Snort is in Passive mode, it acts as a IDS. Drop rules are not loaded (without –treat-drop-as-alert). Snort
can be configured to passive mode using the snort config optionpolicy mode as follows:

config policy_mode:tap

• Inline-Test

Inline-Test mode simulates the inline mode of snort, allowing evaluation of inline behavior without affecting
traffic. The drop rules will be loaded and will be triggered asa Wdrop (Would Drop) alert. Snort can be
configured to run in inline-test mode using the command line option (–enable-inline-test) or using the snort
config optionpolicy mode as follows:

24

snort --enable-inline-test
config policy_mode:inline_test

△! NOTE
Please note –enable-inline-test cannot be used in conjunction with -Q.

Behavior of different modes with rule options

Rule Option Inline Mode Passive Mode Inline-Test Mode

reject Drop + Response Alert + Response Wdrop + Response
react Blocks and send notice Blocks and send notice Blocks and send notice
normalize Normalizes packet Doesn’t normalize Doesn’t normalize
replace replace content Doesn’t replace Doesn’t replace
respond close session close session close session

Behavior of different modes with rules actions

Adapter Mode Snort args config policymode Drop Rule Handling

Passive snort --treat-drop-as-alert tap Alert
Passive snort tap Not Loaded
Passive snort --treat-drop-as-alert inline test Alert
Passive snort inline test Would Drop
Passive snort --treat-drop-as-alert inline Alert
Passive snort inline Not loaded + warning
Inline Test snort --enable-inline-test --treat-drop-as-alert tap Alert
Inline Test snort --enable-inline-test tap Would Drop
Inline Test snort --enable-inline-test --treat-drop-as-alert inline test Alert
Inline Test snort --enable-inline-test inline test Would Drop
Inline Test snort --enable-inline-test --treat-drop-as-alert inline Alert
Inline Test snort --enable-inline-test inline Would Drop
Inline snort -Q --treat-drop-as-alert tap Alert
Inline snort -Q tap Alert
Inline snort -Q --treat-drop-as-alert inline test Alert
Inline snort -Q inline test Would Drop
Inline snort -Q --treat-drop-as-alert inline Alert
Inline snort -Q inline Drop

1.10 More Information

Chapter 2 contains much information about many configuration options available in the configuration file. The Snort
manual page and the output ofsnort -? or snort --help contain information that can help you get Snort running
in several different modes.

△! NOTE
In many shells, a backslash (\) is needed to escape the ?, so you may have to typesnort - \? instead of
snort -? for a list of Snort command line options.

The Snort web page (http://www.snort.org) and the Snort Users mailing list:

http://marc.theaimsgroup.com/?l=snort-users

at snort-users@lists.sourceforge.net provide informative announcements as well as a venue for community
discussion and support. There’s a lot to Snort, so sit back with a beverage of your choosing and read the documentation
and mailing list archives.

25

Chapter 2

Configuring Snort

2.1 Includes

The include keyword allows other snort config files to be included within the snort.conf indicated on the Snort
command line. It works much like an #include from the C programming language, reading the contents of the named
file and adding the contents in the place where the include statement appears in the file.

2.1.1 Format

include <include file path/name>

△! NOTE
Note that there is no semicolon at the end of this line.

Included files will substitute any predefined variable values into their own variable references. See Section 2.1.2 for
more information on defining and using variables in Snort config files.

2.1.2 Variables

Three types of variables may be defined in Snort:

• var

• portvar

• ipvar

△! NOTE
Note: ’ipvar’s are only enabled with IPv6 support. Without IPv6 support, use a regular ’var’.

These are simple substitution variables set with thevar , ipvar , or portvar keywords as follows:

var RULES_PATH rules/
portvar MY_PORTS [22,80,1024:1050]
ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]
alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN pa cket";)
include $RULE_PATH/example.rule

26

IP Variables and IP Lists

IPs may be specified individually, in a list, as a CIDR block, or any combination of the three. If IPv6 support is
enabled, IP variables should be specified using ’ipvar’ instead of ’var’. Using ’var’ for an IP variable is still allowed
for backward compatibility, but it will be deprecated in a future release.

IPs, IP lists, and CIDR blocks may be negated with ’!’. Negation is handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list was logically OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IP from 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The element ’any’ can be used to match all IPs, although ’!any’
is not allowed. Also, negated IP ranges that are more generalthan non-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP lists.

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]

alert tcp $EXAMPLE any -> any any (msg:"Example"; sid:1;)

alert tcp [1.0.0.0/8,!1.1.1.0/24] any -> any any (msg:"Exa mple";sid:2;)

The following examples demonstrate some invalid uses of IP variables and IP lists.

Use of !any:

ipvar EXAMPLE any
alert tcp !$EXAMPLE any -> any any (msg:"Example";sid:3;)

Different use of !any:

ipvar EXAMPLE !any
alert tcp $EXAMPLE any -> any any (msg:"Example";sid:3;)

Logical contradictions:

ipvar EXAMPLE [1.1.1.1,!1.1.1.1]

Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,!1.1.0.0/16]

Port Variables and Port Lists

Portlists supports the declaration and lookup of ports and the representation of lists and ranges of ports. Variables,
ranges, or lists may all be negated with ’!’. Also, ’any’ willspecify any ports, but ’!any’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranges may be specified with a ’:’, such as in:

[10:50,888:900]

27

Port variables should be specified using ’portvar’. The use of ’var’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a ’var’ can still be used to declare a port variable, provided the variable
name either ends with ’PORT’ or begins with ’PORT’.

The following examples demonstrate several valid usages ofboth port variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [!70:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLE1 -> any $EXAMPLE2_PORT (msg:"Exampl e"; sid:1;)

alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example"; sid :2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Exampl e"; sid:3;)

Several invalid examples of port variables and port lists are demonstrated below:

Use of !any:

portvar EXAMPLE5 !any
var EXAMPLE5 !any

Logical contradictions:

portvar EXAMPLE6 [80,!80]

Ports out of range:

portvar EXAMPLE7 [65536]

Incorrect declaration and use of a port variable:

var EXAMPLE8 80
alert tcp any $EXAMPLE8 -> any any (msg:"Example"; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLE1 any -> any any (msg:"Example"; sid:5;)

Variable Modifiers

Rule variable names can be modified in several ways. You can define meta-variables using the $ operator. These can
be used with the variable modifier operators? and- , as described in the following table:

28

Variable Syntax Description
var Defines a meta-variable.
$(var) or $var Replaces with the contents of variablevar .
$(var:-default) Replaces the contents of the variablevar with “default” if var is undefined.
$(var:?message) Replaces with the contents of variablevar or prints out the error message and

exits.

Here is an example of advanced variable usage in action:

ipvar MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Limitations

When embedding variables, types can not be mixed. For instance, port variables can be defined in terms of other port
variables, but old-style variables (with the ’var’ keyword) can not be embedded inside a ’portvar’.

Valid embedded variable:

portvar pvar1 80
portvar pvar2 [$pvar1,90]

Invalid embedded variable:

var pvar1 80
portvar pvar2 [$pvar1,90]

Likewise, variables can not be redefined if they were previously defined as a different type. They should be renamed
instead:

Invalid redefinition:

var pvar 80
portvar pvar 90

2.1.3 Config

Many configuration and command line options of Snort can be specified in the configuration file.

Format

config <directive> [: <value>]

29

Config Directive Description
config alert with interface name Appends interface name to alert (snort -I).
config alertfile: <filename> Sets the alerts output file.
config asn1: <max-nodes> Specifies the maximum number of nodes to track when doing

ASN1 decoding. See Section 3.5.31 for more information and
examples.

config autogenerate preprocessor
decoder rules

If Snort was configured to enable decoder and preprocessor
rules, this option will cause Snort to revert back to it’s origi-
nal behavior of alerting if the decoder or preprocessor generates
an event.

config bpf file: <filename> Specifies BPF filters (snort -F).
config checksum drop: <types> Types of packets to drop if invalid checksums. Values:none ,

noip , notcp , noicmp , noudp , ip , tcp , udp , icmp or all
(only applicable in inline mode and for packets checked per
checksum mode config option).

config checksum mode: <types> Types of packets to calculate checksums. Values:none , noip ,
notcp , noicmp , noudp , ip , tcp , udp , icmp or all .

config chroot: <dir> Chroots to specified dir (snort -t).
config classification: <class> See Table 3.2 for a list of classifications.
config daemon Forks as a daemon (snort -D).
config decode data link Decodes Layer2 headers (snort -e).
config default rule state: <state> Global configuration directive to enable or disable the loading

of rules into the detection engine. Default (with or withoutdi-
rective) is enabled. Specifydisabled to disable loading rules.

config daq: <type> Selects the type of DAQ to instantiate. The DAQ with the high-
est version of the given type is selected if there are multiple of
the same type (this includes any built-in DAQs).

config daq mode: <mode> Select the DAQ mode: passive, inline, or read-file. Not all
DAQs support modes. See the DAQ distro README for possi-
ble DAQ modes or list DAQ capabilities for a brief summary.

config daq var: <name=value> Set a DAQ specific variable. Snort just passes this information
down to the DAQ. See the DAQ distro README for possible
DAQ variables.

config daq dir: <dir> Tell Snort where to look for available dynamic DAQ modules.
This can be repeated. The selected DAQ will be the one with
the latest version.

config daq list: [<dir>] Tell Snort to dump basic DAQ capabilities and exit. You can op-
tionally specify a directory to include any dynamic DAQs from
that directory. You can also preceed this option with extra DAQ
directory options to look in multiple directories.

30

config detection: [search-method
<method>]

Select type of fast pattern matcher algorithm to use.
• search-method <method>

– Queued match search methods - Matches are
queued until the fast pattern matcher is finished with
the payload, then evaluated. This was found to gen-
erally increase performance through fewer cache
misses (evaluating each rule would generally blow
away the fast pattern matcher state in the cache).

∗ ac andac-q - Aho-Corasick Full (high mem-
ory, best performance).

∗ ac-bnfa and ac-bnfa-q - Aho-Corasick Bi-
nary NFA (low memory, high performance)

∗ lowmem and lowmem-q - Low Memory Key-
word Trie (low memory, moderate perfor-
mance)

∗ ac-split - Aho-Corasick Full with ANY-
ANY port group evaluated separately (low
memory, high performance). Note this
is shorthand for search-method ac,
split-any-any

∗ intel-cpm - Intel CPM library (must have
compiled Snort with location of libraries to en-
able this)

– No queue search methods - The ”nq” option spec-
ifies that matches should not be queued and evalu-
ated as they are found.

∗ ac-nq - Aho-Corasick Full (high memory, best
performance).

∗ ac-bnfa-nq - Aho-Corasick Binary NFA (low
memory, high performance). This is the default
search method if none is specified.

∗ lowmem-nq - Low Memory Keyword Trie (low
memory, moderate performance)

– Other search methods (the above are considered su-
perior to these)

∗ ac-std - Aho-Corasick Standard (high mem-
ory, high performance)

∗ acs - Aho-Corasick Sparse (high memory,
moderate performance)

∗ ac-banded - Aho-Corasick Banded (high
memory, moderate performance)

∗ ac-sparsebands - Aho-Corasick Sparse-
Banded (high memory, moderate performance)

31

config detection: [split-any-any]
[search-optimize] [max-pattern-len
<int>]

Other options that affect fast pattern matching.

• split-any-any

– A memory/performance tradeoff. By default, ANY-
ANY port rules are added to every non ANY-ANY
port group so that only one port group rule eval-
uation needs to be done per packet. Not putting
the ANY-ANY port rule group into every other port
group can significantly reduce the memory footprint
of the fast pattern matchers if there are many ANY-
ANY port rules. But doing so may require two port
group evaluations per packet - one for the specific
port group and one for the ANY-ANY port group,
thus potentially reducing performance. This option
is generic and can be used with anysearch-method
but was specifically intended for use with theac
search-method where the memory footprint is sig-
nificantly reduced though overall fast pattern per-
formance is better thanac-bnfa . Of note is that
the lower memory footprint can also increase per-
formance through fewer cache misses. Default is
not to split the ANY-ANY port group.

• search-optimize

– Optimizes fast pattern memory when used with
search-method ac or ac-split by dynamically
determining the size of a state based on the total
number of states. When used withac-bnfa , some
fail-state resolution will be attempted, potentially
increasing performance. Default is not to optimize.

• max-pattern-len <integer>

– This is a memory optimization that specifies the
maximum length of a pattern that will be put in the
fast pattern matcher. Patterns longer than this length
will be truncated to this length before inserting into
the pattern matcher. Useful when there are very
long contents being used and truncating the pattern
won’t diminish the uniqueness of the patterns. Note
that this may cause more false positive rule evalu-
ations, i.e. rules that will be evaluated because a
fast pattern was matched, but eventually fail, how-
ever CPU cache can play a part in performance so a
smaller memory footprint of the fast pattern matcher
can potentially increase performance. Default is to
not set a maximum pattern length.

32

config detection:
[no stream inserts]
[max queue events <int>]
[enable-single-rule-group]
[bleedover-port-limit]

Other detection engine options.

• no stream inserts

– Specifies that stream inserted packets should not be
evaluated against the detection engine. This is a po-
tential performance improvement with the idea that
the stream rebuilt packet will contain the payload
in the inserted one so the stream inserted packet
doesn’t need to be evaluated. Default is to inspect
stream inserts.

• max queue events <integer>

– Specifies the maximum number of events to queue
per packet. Default is 5 events.

• enable-single-rule-group

– Put all rules into one port group. Not recommended.
Default is not to do this.

• bleedover-port-limit

– The maximum number of source or destination
ports designated in a rule before the rule is consid-
ered an ANY-ANY port group rule. Default is 1024.

33

config detection: [debug]
[debug-print-nocontent-rule-tests]
[debug-print-rule-group-build-details]
[debug-print-rule-groups-uncompiled]
[debug-print-rule-groups-compiled]
[debug-print-fast-pattern]
[bleedover-warnings-enabled]

Options for detection engine debugging.

• debug

– Prints fast pattern information for a particular port
group.

• debug-print-nocontent-rule-tests

– Prints port group information during packet evalua-
tion.

• debug-print-rule-group-build-details

– Prints port group information during port group
compilation.

• debug-print-rule-groups-uncompiled

– Prints uncompiled port group information.

• debug-print-rule-groups-compiled

– Prints compiled port group information.

• debug-print-fast-pattern

– For each rule with fast pattern content, prints infor-
mation about the content being used for the fast pat-
tern matcher.

• bleedover-warnings-enabled

– Prints a warning if the number of source or
destination ports used in a rule exceed the
bleedover-port-limit forcing the rule to be
moved into the ANY-ANY port group.

config disable decode alerts Turns off the alerts generated by the decode phase of Snort.
config disable inline init failopen Disables failopen thread that allows inline traffic to pass

while Snort is starting up. Only useful if Snort was
configured with –enable-inline-init-failopen. (snort
--disable-inline-init-failopen)

config disable ipopt alerts Disables IP option length validation alerts.
config disable tcpopt alerts Disables option length validation alerts.
config
disable tcpopt experimental alerts

Turns off alerts generated by experimental TCP options.

config disable tcpopt obsolete alerts Turns off alerts generated by obsolete TCP options.
config disable tcpopt ttcp alerts Turns off alerts generated by T/TCP options.
config disable ttcp alerts Turns off alerts generated by T/TCP options.
config dump chars only Turns on character dumps (snort -C).
config dump payload Dumps application layer (snort -d).
config dump payload verbose Dumps raw packet starting at link layer (snort -X).
config enable decode drops Enables the dropping of bad packets identified by decoder (only

applicable in inline mode).
config enable decode oversized alerts Enable alerting on packets that have headers containing length

fields for which the value is greater than the length of the packet.

34

config enable decode oversized drops Enable dropping packets that have headers containing length
fields for which the value is greater than the length of the packet.
enable decode oversized alerts must also be enabled for
this to be effective (only applicable in inline mode).

config enable deep teredo inspection Snort’s packet decoder only decodes Teredo (IPv6 over UDP
over IPv4) traffic on UDP port 3544. This option makes Snort
decode Teredo traffic on all UDP ports.

config enable ipopt drops Enables the dropping of bad packets with bad/truncated IP op-
tions (only applicable in inline mode).

config enable mpls multicast Enables support for MPLS multicast. This option is needed
when the network allows MPLS multicast traffic. When this
option is off and MPLS multicast traffic is detected, Snort will
generate an alert. By default, it is off.

config enable mpls overlapping ip Enables support for overlapping IP addresses in an MPLS net-
work. In a normal situation, where there are no overlapping
IP addresses, this configuration option should not be turnedon.
However, there could be situations where two private networks
share the same IP space and different MPLS labels are used to
differentiate traffic from the two VPNs. In such a situation,this
configuration option should be turned on. By default, it is off.

config enable tcpopt drops Enables the dropping of bad packets with bad/truncated TCP
option (only applicable in inline mode).

config
enable tcpopt experimental drops

Enables the dropping of bad packets with experimental TCP op-
tion. (only applicable in inline mode).

config enable tcpopt obsolete drops Enables the dropping of bad packets with obsolete TCP option.
(only applicable in inline mode).

enable tcpopt ttcp drops Enables the dropping of bad packets with T/TCP option. (only
applicable in inline mode).

enable ttcp drops Enables the dropping of bad packets with T/TCP option. (only
applicable in inline mode).

config event filter: memcap
<bytes>

Set global memcap in bytes for thresholding. Default is
1048576 bytes (1 megabyte).

config event queue: [max queue
<num>] [log <num>] [order events
<order>]

Specifies conditions about Snort’s event queue. You can use the
following options:

• max queue <integer > (max events supported)

• log <integer > (number of events to log)

• order events [priority |content length] (how to
order events within the queue)

See Section 2.4.4 for more information and examples.
config flowbits size: <num-bits> Specifies the maximum number of flowbit tags that can be used

within a rule set. The default is 1024 bits and maximum is 2096.
config ignore ports: <proto>
<port-list>

Specifies ports to ignore (useful for ignoring noisy NFS traffic).
Specify the protocol (TCP, UDP, IP, or ICMP), followed by a
list of ports. Port ranges are supported.

config interface: <iface> Sets the network interface (snort -i).

35

config ipv6 frag:
[bsd icmp frag alert on|off]
[, bad ipv6 frag alert on|off]
[, frag timeout <secs>] [,
max frag sessions <max-track>]

The following options can be used:

• bsd icmp frag alert on|off (Specify whether or not
to alert. Default is on)

• bad ipv6 frag alert on|off (Specify whether or not
to alert. Default is on)

• frag timeout <integer > (Specify amount of time in
seconds to timeout first frag in hash table)

• max frag sessions <integer > (Specify the number
of fragments to track in the hash table)

config logdir: <dir> Sets the logdir (snort -l).
config max attribute hosts: <hosts> Sets a limit on the maximum number of hosts to read from

the attribute table. Minimum value is 32 and the maximum is
524288 (512k). The default is 10000. If the number of hosts
in the attribute table exceeds this value, an error is loggedand
the remainder of the hosts are ignored. This option is only sup-
ported with a Host Attribute Table (see section 2.7).

config max mpls labelchain len:
<num-hdrs>

Sets a Snort-wide limit on the number of MPLS headers a
packet can have. Its default value is -1, which means that there
is no limit on label chain length.

config min ttl: <ttl> Sets a Snort-wide minimum ttl to ignore all traffic.
config mpls payload type:
ipv4|ipv6|ethernet

Sets a Snort-wide MPLS payload type. In addition to ipv4, ipv6
and ethernet are also valid options. The default MPLS payload
type is ipv4

config no promisc Disables promiscuous mode (snort -p).
config nolog Disables logging. Note: Alerts will still occur. (snort -N).
config nopcre Disables pcre pattern matching.
config obfuscate Obfuscates IP Addresses (snort -O).
config order: <order> Changes the order that rules are evaluated, eg: pass alert log

activation.
config pcre match limit:
<integer >

Restricts the amount of backtracking a given PCRE option. For
example, it will limit the number of nested repeats within a pat-
tern. A value of -1 allows for unlimited PCRE, up to the PCRE
library compiled limit (around 10 million). A value of 0 results
in no PCRE evaluation. The snort default value is 1500.

config pcre match limit recursion:
<integer >

Restricts the amount of stack used by a given PCRE option. A
value of -1 allows for unlimited PCRE, up to the PCRE library
compiled limit (around 10 million). A value of 0 results in no
PCRE evaluation. The snort default value is 1500. This option
is only useful if the value is less than thepcre match limit

config pkt count: <N> Exits after N packets (snort -n).
config policy version:
<base-version-string >

[<binding-version-string >]

Supply versioning information to configuration files. Base ver-
sion should be a string in all configuration files including in-
cluded ones. In addition, binding version must be in any file
configured withconfig binding . This option is used to avoid
race conditions when modifying and loading a configuration
within a short time span - before Snort has had a chance to load
a previous configuration.

config profile preprocs Print statistics on preprocessor performance. See Section2.5.2
for more details.

config profile rules Print statistics on rule performance. See Section 2.5.1 formore
details.

36

config quiet Disables banner and status reports (snort -q). NOTE: The
command line switch-q takes effect immediately after pro-
cessing the command line parameters, whereas usingconfig
quiet in snort.conf takes effect when the configuration line in
snort.conf is parsed. That may occur after other configuration
settings that result in output to console or syslog.

config read bin file: <pcap> Specifies a pcap file to use (instead of reading from network),
same effect as -r<tf> option.

config reference: <ref> Adds a new reference system to Snort, eg: myref
http://myurl.com/?id=

config reference net <cidr> For IP obfuscation, the obfuscated net will be used if the packet
contains an IP address in the reference net. Also used to de-
termine how to set up the logging directory structure for the
session post detection rule option and ASCII output plugin -
an attempt is made to name the log directories after the IP ad-
dress that is not in the reference net.

config response: [attempts
<count>] [, device <dev>]

Set the number of strafing attempts per injected response and/or
the device, such as eth0, from which to send responses. These
options may appear in any order but must be comma separated.
The are intended for passive mode.

config set gid: <gid> Changes GID to specified GID (snort -g).
set uid: <uid> Sets UID to<id> (snort -u).
config show year Shows year in timestamps (snort -y).
config snaplen: <bytes> Set the snaplength of packet, same effect as-P <snaplen > or

--snaplen <snaplen > options.
config stateful Sets assurance mode for stream (stream is established).
config tagged packet limit:
<max-tag>

When a metric other thanpackets is used in a tag option in
a rule, this option sets the maximum number of packets to be
tagged regardless of the amount defined by the other metric.
See Section 3.7.5 on using the tag option when writing rules
for more details. The default value when this option is not con-
figured is 256 packets. Setting this option to a value of 0 will
disable the packet limit.

config so rule memcap: <bytes> Set global memcap in bytes for so rules that dynamically allo-
cate memory for storing session data in the stream preproces-
sor. A value of 0 disables the memcap. Default is 0. Maximum
value is the maximum value an unsigned 32 bit integer can hold
which is 4294967295 or 4GB.

config threshold: memcap <bytes> Set global memcap in bytes for thresholding. Default is
1048576 bytes (1 megabyte). (This is deprecated. Use config
eventfilter instead.)

config timestats interval: <secs> Set the amount of time in seconds between logging time stats.
Default is 3600 (1 hour). Note this option is only available if
Snort was built to use time stats with--enable-timestats .

config umask: <umask> Sets umask when running (snort -m).
config utc Uses UTC instead of local time for timestamps (snort -U).
config verbose Uses verbose logging to STDOUT (snort -v).
config policy mode:
tap|inline|inline test

Sets the policy mode to eitherpassive , inline or
inline test .

2.2 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. Theyallow the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snort fairly easily. Preprocessor code is run before the detection

37

engine is called, but after the packet has been decoded. The packet can be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured using thepreprocessor keyword. The format of the preprocessor directive
in the Snort config file is:

preprocessor <name>: <options>

2.2.1 Frag3

The frag3 preprocessor is a target-based IP defragmentation module for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed with the following goals:

1. Faster execution than frag2 with less complex data management.

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively for managing the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use when you have some assurance of locality of reference for the
data that you are handling but in high speed, heavily fragmented environments the nature of the splay trees worked
against the system and actually hindered performance. Frag3 uses the sfxhash data structure and linked lists for data
handling internally which allows it to have much more predictable and deterministic performance in any environment
which should aid us in managing heavily fragmented environments.

Target-based analysis is a relatively new concept in network-based intrusion detection. The idea of a target-based
system is to model the actual targets on the network instead of merely modeling the protocols and looking for attacks
within them. When IP stacks are written for different operating systems, they are usually implemented by people
who read the RFCs and then write their interpretation of whatthe RFC outlines into code. Unfortunately, there are
ambiguities in the way that the RFCs define some of the edge conditions that may occur and when this happens
different people implement certain aspects of their IP stacks differently. For an IDS this is a big problem.

In an environment where the attacker can determine what style of IP defragmentation is being used on a particular
target, the attacker can try to fragment packets such that the target will put them back together in a specific manner
while any passive systems trying to model the host traffic have to guess which way the target OS is going to handle the
overlaps and retransmits. As I like to say, if the attacker has more information about the targets on a network than the
IDS does, it is possible to evade the IDS. This is where the idea for “target-based IDS” came from. For more detail on
this issue and how it affects IDS, check out the famous Ptacek& Newsham paper athttp://www.snort.org/docs/
idspaper/ .

The basic idea behind target-based IDS is that we tell the IDSinformation about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on information about how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this very topic in 2003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implementations handled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it out athttp://www.icir.org/vern/papers/activemap-oak03.pdf .

We can also present the IDS with topology information to avoid TTL-based evasions and a variety of other issues, but
that’s a topic for another day. Once we have this informationwe can start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a target-based module within Snort to test this idea.

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2. There are at least two preprocessor directives required
to activate frag3, a global configuration directive and an engine instantiation. There can be an arbitrary number of
engines defined at startup with their own configuration, but only one global configuration.

Global Configuration

38

• Preprocessor name:frag3 global

• Available options: NOTE: Global configuration options are comma separated.

– max frags <number> - Maximum simultaneous fragments to track. Default is 8192.

– memcap <bytes > - Memory cap for self preservation. Default is 4MB.

– prealloc frags <number> - Alternate memory management mode. Use preallocated fragment nodes
(faster in some situations).

– disabled - Option to turn off the preprocessor. By default this optionis turned off. When the preprocessor
is disabled only the options memcap, preallocmemcap, and preallocfrags are applied when specified with
the configuration.

Engine Configuration

• Preprocessor name:frag3 engine

• Available options: NOTE: Engine configuration options are space separated.

– timeout <seconds > - Timeout for fragments. Fragments in the engine for longer than this period will
be automatically dropped. Default is 60 seconds.

– min ttl <value > - Minimum acceptable TTL value for a fragment packet. Default is 1. The accepted
range for this option is 1 - 255.

– detect anomalies - Detect fragment anomalies.

– bind to <ip list > - IP List to bind this engine to. This engine will only run for packets with destination
addresses contained within the IP List. Default value isall .

– overlap limit <number> - Limits the number of overlapping fragments per packet. Thedefault is ”0”
(unlimited). This config option takes values equal to or greater than zero. This is an optional parameter.
detectanomalies option must be configured for this option to take effect.

– min fragment length <number> - Defines smallest fragment size (payload size) that should be consid-
ered valid. Fragments smaller than or equal to this limit areconsidered malicious and an event is raised,
if detectanomalies is also configured. The default is ”0” (unlimited), the minimum is ”0”. This is an
optional parameter. detectanomalies option must be configured for this option to take effect.

– policy <type > - Select a target-based defragmentation mode. Available types are first, last, bsd, bsd-
right, linux. Default type is bsd.

The Paxson Active Mapping paper introduced the terminologyfrag3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more mappings and would like to add to this list
please feel free to send us an email!

39

Platform Type

AIX 2 BSD
AIX 4.3 8.9.3 BSD
Cisco IOS Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) linux
OpenBSD (version unknown) linux
OpenVMS 7.1 BSD
OS/2 (version unknown) BSD
OSF1 V3.0 BSD
OSF1 V3.2 BSD
OSF1 V4.0,5.0,5.1 BSD
SunOS 4.1.4 BSD
SunOS 5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) First

Format

Note in the advanced configuration below that there are threeengines specified running withLinux, first andlast
policies assigned. The first two engines are bound to specificIP address ranges and the last one applies to all other
traffic. Packets that don’t fall within the address requirements of the first two engines automatically fall through to the
third one.

Basic Configuration

preprocessor frag3_global
preprocessor frag3_engine

Advanced Configuration

preprocessor frag3_global: prealloc_nodes 8192
preprocessor frag3_engine: policy linux, bind_to 192.168 .1.0/24
preprocessor frag3_engine: policy first, bind_to [10.1.4 7.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last, detect_anomalie s

40

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of anomalies. Its event output is packet-based so it will work with
all output modes of Snort. Read the documentation in thedoc/signatures directory with filenames that begin with
“123-” for information on the different event types.

2.2.2 Stream5

The Stream5 preprocessor is a target-based TCP reassembly module for Snort. It is capable of tracking sessions for
both TCP and UDP. With Stream5, the rule ’flow’ and ’flowbits’ keywords are usable with TCP as well as UDP traffic.

Transport Protocols

TCP sessions are identified via the classic TCP ”connection”. UDP sessions are established as the result of a series of
UDP packets from two end points via the same set of ports. ICMPmessages are tracked for the purposes of checking
for unreachable and service unavailable messages, which effectively terminate a TCP or UDP session.

Target-Based

Stream5, like Frag3, introduces target-based actions for handling of overlapping data and other TCP anomalies. The
methods for handling overlapping data, TCP Timestamps, Data on SYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream5 are the results of extensive research with many target operating systems.

Stream API

Stream5 fully supports the Stream API, other protocol normalizers/preprocessors to dynamically configure reassembly
behavior as required by the application layer protocol, identify sessions that may be ignored (large data transfers, etc),
and update the identifying information about the session (application protocol, direction, etc) that can later be usedby
rules.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, data received outside the TCP window, etc are configured via
thedetect anomalies option to the TCP configuration. Some of these anomalies are detected on a per-target basis.
For example, a few operating systems allow data in TCP SYN packets, while others do not.

Stream5 Global Configuration

Global settings for the Stream5 preprocessor.

preprocessor stream5_global: \
[track_tcp <yes|no>], [max_tcp <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[flush_on_alert], [show_rebuilt_packets], \
[prune_log_max <bytes>], [disabled]

41

Option Description
track tcp <yes|no> Track sessions for TCP. The default is ”yes”.
max tcp <num sessions> Maximum simultaneous TCP sessions tracked. The default is ”262144”, maxi-

mum is ”1048576”, minimum is ”1”.
memcap <num bytes> Memcap for TCP packet storage. The default is ”8388608” (8MB), maximum is

”1073741824” (1GB), minimum is ”32768” (32KB).
track udp <yes|no> Track sessions for UDP. The default is ”yes”.
max udp <num sessions> Maximum simultaneous UDP sessions tracked. The default is ”131072”, maxi-

mum is ”1048576”, minimum is ”1”.
track icmp <yes|no> Track sessions for ICMP. The default is ”no”.
max icmp <num sessions> Maximum simultaneous ICMP sessions tracked. The default is”65536”, maxi-

mum is ”1048576”, minimum is ”1”.
disabled Option to disable the stream5 tracking. By default this option is turned off. When

the preprocessor is disabled only the options memcap, maxtcp, maxudp and
max icmp are applied when specified with the configuration.

flush on alert Backwards compatibility. Flush a TCP stream when an alert isgenerated on that
stream. The default is set to off.

show rebuilt packets Print/display packet after rebuilt (for debugging). The default is set to off.
prune log max <num bytes> Print a message when a session terminates that was consumingmore than the

specified number of bytes. The default is ”1048576” (1MB), minimum can be
either ”0” (disabled) or if not disabled the minimum is ”1024” and maximum is
”1073741824”.

Stream5 TCP Configuration

Provides a means on a per IP address target to configure TCP policy. This can have multiple occurrences, per policy
that is bound to an IP address or network. One default policy must be specified, and that policy is not bound to an IP
address or network.

preprocessor stream5_tcp: \
[bind_to <ip_addr>], \
[timeout <number secs>], [policy <policy_id>], \
[overlap_limit <number>], [max_window <number>], \
[require_3whs [<number secs>]], [detect_anomalies], \
[check_session_hijacking], [use_static_footprint_siz es], \
[dont_store_large_packets], [dont_reassemble_async], \
[max_queued_bytes <bytes>], [max_queued_segs <number se gs>], \
[small_segments <number> bytes <number> [ignore_ports nu mber [number]*]], \
[ports <client|server|both> <all|number [number]*>], \
[protocol <client|server|both> <all|service name [servi ce name]*>], \
[ignore_any_rules], [flush_factor <number segs>]

Option Description
bind to <ip addr> IP address or network for this policy. The default is set to any.
timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, andthe maxi-

mum is ”86400” (approximately 1 day).

42

policy <policy id> The Operating System policy for the target OS. The policyid can be one
of the following:

Policy Name Operating Systems.
first Favor first overlapped segment.
last Favor first overlapped segment.
bsd FresBSD 4.x and newer, NetBSD 2.x and

newer, OpenBSD 3.x and newer
linux Linux 2.4 and newer
old-linux Linux 2.2 and earlier
windows Windows 2000, Windows XP, Windows

95/98/ME
win2003 Windows 2003 Server
vista Windows Vista
solaris Solaris 9.x and newer
hpux HPUX 11 and newer
hpux10 HPUX 10
irix IRIX 6 and newer
macos MacOS 10.3 and newer

overlap limit <number> Limits the number of overlapping packets per session. The default is ”0”
(unlimited), the minimum is ”0”, and the maximum is ”255”.

max window <number> Maximum TCP window allowed. The default is ”0” (unlimited),the
minimum is ”0”, and the maximum is ”1073725440” (65535 left shift
14). That is the highest possible TCP window per RFCs. This option is
intended to prevent a DoS against Stream5 by an attacker using an abnor-
mally large window, so using a value near the maximum is discouraged.

require 3whs [<number
seconds>]

Establish sessions only on completion of a SYN/SYN-ACK/ACKhand-
shake. The default is set to off. The optional number of seconds speci-
fies a startup timeout. This allows a grace period for existing sessions to
be considered established during that interval immediately after Snort is
started. The default is ”0” (don’t consider existing sessions established),
the minimum is ”0”, and the maximum is ”86400” (approximately 1
day).

detect anomalies Detect and alert on TCP protocol anomalies. The default is set to off.
check session hijacking Check for TCP session hijacking. This check validates the hardware

(MAC) address from both sides of the connect – as establishedon the
3-way handshake against subsequent packets received on thesession. If
an ethernet layer is not part of the protocol stack received by Snort, there
are no checks performed. Alerts are generated (per ’detect anomalies ’
option) for either the client or server when the MAC address for one side
or the other does not match. The default is set to off.

use static footprint sizes Use static values for determining when to build a reassembled packet to
allow for repeatable tests. This option should not be used production
environments. The default is set to off.

dont store large packets Performance improvement to not queue large packets in reassembly
buffer. The default is set to off. Using this option may result in missed
attacks.

dont reassemble async Don’t queue packets for reassembly if traffic has not been seen in both
directions. The default is set to queue packets.

max queued bytes <bytes> Limit the number of bytes queued for reassembly on a given TCPsession
to bytes. Default is ”1048576” (1MB). A value of ”0” means unlimited,
with a non-zero minimum of ”1024”, and a maximum of ”1073741824”
(1GB). A message is written to console/syslog when this limit is en-
forced.

43

max queued segs <num> Limit the number of segments queued for reassembly on a givenTCP
session. The default is ”2621”, derived based on an average size of 400
bytes. A value of ”0” means unlimited, with a non-zero minimum of
”2”, and a maximum of ”1073741824” (1GB). A message is written to
console/syslog when this limit is enforced.

small segments <number>
bytes <number> [ignore ports
<number(s)>]

Configure the maximum small segments queued. This feature requires
that detectanomalies be enabled. The first number is the number of con-
secutive segments that will trigger the detection rule. Thedefault value
is ”0” (disabled), with a maximum of ”2048”. The second number is
the minimum bytes for a segment to be considered ”small”. Thedefault
value is ”0” (disabled), with a maximum of ”2048”. ignoreports is op-
tional, defines the list of ports in which will be ignored for this rule. The
number of ports can be up to ”65535”. A message is written to con-
sole/syslog when this limit is enforced.

ports <client|server|both>
<all|number(s)>

Specify the client, server, or both and list of ports in whichto perform
reassembly. This can appear more than once in a given config. The de-
fault settings areports client 21 23 25 42 53 80 110 111 135
136 137 139 143 445 513 514 1433 1521 2401 3306 . The mini-
mum port allowed is ”1” and the maximum allowed is ”65535”.

protocol
<client|server|both>
<all|service name(s)>

Specify the client, server, or both and list of services in which to perform
reassembly. This can appear more than once in a given config. The
default settings areports client ftp telnet smtp nameserver
dns http pop3 sunrpc dcerpc netbios-ssn imap login shell
mssql oracle cvs mysql . The service names can be any of those
used in the host attribute table (see 2.7), including any of the internal
defaults (see 2.7.3) or others specific to the network.

ignore any rules Don’t process any-> any (ports) rules for TCP that attempt to match
payload if there are no port specific rules for the src or destination port.
Rules that have flow or flowbits will never be ignored. This is aperfor-
mance improvement and may result in missed attacks. Using this does
not affect rules that look at protocol headers, only those with content,
PCRE, or byte test options. The default is ”off”. This optioncan be used
only in default policy.

flush factor Useful in ips mode to flush upon seeing a drop in segment size after N
segments of non-decreasing size. The drop in size often indicates an end
of request or response.

△! NOTE
If no options are specified for a given TCP policy, that is the default TCP policy. If only a bindto option is
used with no other options that TCP policy uses all of the default values.

Stream5 UDP Configuration

Configuration for UDP session tracking. Since there is no target based binding, there should be only one occurrence
of the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [igno re_any_rules]

44

Option Description
timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, andthe maximum is

”86400” (approximately 1 day).
ignore any rules Don’t process any-> any (ports) rules for UDP that attempt to match payload

if there are no port specific rules for the src or destination port. Rules that have
flow or flowbits will never be ignored. This is a performance improvement and
may result in missed attacks. Using this does not affect rules that look at protocol
headers, only those with content, PCRE, or byte test options. The default is ”off”.

△! NOTE
With the ignoreany rules option, a UDP rule will be ignored except when there is another port specific rule
that may be applied to the traffic. For example, if a UDP rule specifies destination port 53, the ’ignored’ any
-> any rule will be applied to traffic to/from port 53, but NOT to any other source or destination port. A list
of rule SIDs affected by this option are printed at Snort’s startup.

△! NOTE
With the ignoreany rules option, if a UDP rule that uses any-> any ports includes either flow or flowbits,
the ignoreany rules option is effectively pointless. Because of the potential impact of disabling a flowbits
rule, the ignoreany rules option will be disabled in this case.

Stream5 ICMP Configuration

Configuration for ICMP session tracking. Since there is no target based binding, there should be only one occurrence
of the ICMP configuration.

△! NOTE
ICMP is currently untested, in minimal code form and is NOT ready for use in production networks. It is not
turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

Option Description
timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, andthe maximum is

”86400” (approximately 1 day).

Example Configurations

1. This example configuration is the default configuration insnort.conf and can be used for repeatable tests of
stream reassembly in readback mode.

preprocessor stream5_global: \
max_tcp 8192, track_tcp yes, track_udp yes, track_icmp no

preprocessor stream5_tcp: \
policy first, use_static_footprint_sizes

preprocessor stream5_udp: \
ignore_any_rules

2. This configuration maps two network segments to differentOS policies, one for Windows and one for Linux,
with all other traffic going to the default policy of Solaris.

45

preprocessor stream5_global: track_tcp yes
preprocessor stream5_tcp: bind_to 192.168.1.0/24, polic y windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy li nux
preprocessor stream5_tcp: policy solaris

2.2.3 sfPortscan

The sfPortscan module, developed by Sourcefire, is designedto detect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker determines what types of network protocols or services a host
supports. This is the traditional place where a portscan takes place. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported by thetarget; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its intended target, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the nature oflegitimate network communications, negative responses
from hosts are rare, and rarer still are multiple negative responses within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negativeresponses.

One of the most common portscanning tools in use today is Nmap. Nmap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to be able to detect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types of Nmap scans:

• TCP Portscan

• UDP Portscan

• IP Portscan

These alerts are for one→one portscans, which are the traditional types of scans; onehost scans multiple ports on
another host. Most of the port queries will be negative, since most hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy portscans:

• TCP Decoy Portscan

• UDP Decoy Portscan

• IP Decoy Portscan

Decoy portscans are much like the Nmap portscans described above, only the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactic helps hide the true identity of the attacker.

sfPortscan alerts for the following types of distributed portscans:

• TCP Distributed Portscan

• UDP Distributed Portscan

• IP Distributed Portscan

These are many→one portscans. Distributed portscans occur when multiple hosts query one host for open services.
This is used to evade an IDS and obfuscate command and controlhosts.

△! NOTE
Negative queries will be distributed among scanning hosts,so we track this type of scan through the scanned
host.

sfPortscan alerts for the following types of portsweeps:

46

• TCP Portsweep

• UDP Portsweep

• IP Portsweep

• ICMP Portsweep

These alerts are for one→many portsweeps. One host scans a single port on multiple hosts. This usually occurs when
a new exploit comes out and the attacker is looking for a specific service.

△! NOTE
The characteristics of a portsweep scan may not result in many negative responses. For example, if an attacker
portsweeps a web farm for port 80, we will most likely not see many negative responses.

sfPortscan alerts on the following filtered portscans and portsweeps:

• TCP Filtered Portscan

• UDP Filtered Portscan

• IP Filtered Portscan

• TCP Filtered Decoy Portscan

• UDP Filtered Decoy Portscan

• IP Filtered Decoy Portscan

• TCP Filtered Portsweep

• UDP Filtered Portsweep

• IP Filtered Portsweep

• ICMP Filtered Portsweep

• TCP Filtered Distributed Portscan

• UDP Filtered Distributed Portscan

• IP Filtered Distributed Portscan

“Filtered” alerts indicate that there were no network errors (ICMP unreachables or TCP RSTs) or responses on closed
ports have been suppressed. It’s also a good indicator of whether the alert is just a very active legitimate host. Active
hosts, such as NATs, can trigger these alerts because they can send out many connection attempts within a very small
amount of time. A filtered alert may go off before responses from the remote hosts are received.

sfPortscan only generates one alert for each host pair in question during the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any open ports that were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert has been triggered. Open port events are not individual alerts, but
tags based on the original scan alert.

47

sfPortscan Configuration

Use of the Stream5 preprocessor is required for sfPortscan.Stream gives portscan direction in the case of connection-
less protocols like ICMP and UDP. You should enable the Stream preprocessor in yoursnort.conf , as described in
Section 2.2.2.

The parameters you can use to configure the portscan module are:

1. proto <protocol>

Available options:

• TCP

• UDP

• IGMP

• ip proto

• all

2. scantype<scan type>

Available options:

• portscan

• portsweep

• decoy portscan

• distributed portscan

• all

3. senselevel<level>

Available options:

• low - “Low” alerts are only generated on error packets sent from the target host, and because of the nature
of error responses, this setting should see very few false positives. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responses. This setting is based on a static time window of
60 seconds, after which this window is reset.

• medium - “Medium” alerts track connection counts, and so will generate filtered scan alerts. This setting
may false positive on active hosts (NATs, proxies, DNS caches, etc), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

• high - “High” alerts continuously track hosts on a network using atime window to evaluate portscan
statistics for that host. A ”High” setting will catch some slow scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitely will require the user to tune sfPortscan.

4. watch ip <ip1|ip2/cidr[[port |port2-port3]] >

Defines which IPs, networks, and specific ports on those hoststo watch. The list is a comma separated list of
IP addresses, IP address using CIDR notation. Optionally, ports are specified after the IP address/CIDR using a
space and can be either a single port or a range denoted by a dash. IPs or networks not falling into this range are
ignored if this option is used.

5. ignore scanners<ip1|ip2/cidr[[port |port2-port3]] >

Ignores the source of scan alerts. The parameter is the same format as that ofwatch ip .

6. ignore scanned<ip1|ip2/cidr[[port |port2-port3]] >

Ignores the destination of scan alerts. The parameter is thesame format as that ofwatch ip .

7. logfile<file>

This option will output portscan events to the file specified.If file does not contain a leading slash, this file
will be placed in the Snort config dir.

48

8. include midstream

This option will include sessions picked up in midstream by Stream5. This can lead to false alerts, especially
under heavy load with dropped packets; which is why the option is off by default.

9. detectack scans

This option will include sessions picked up in midstream by the stream module, which is necessary to detect
ACK scans. However, this can lead to false alerts, especially under heavy load with dropped packets; which is
why the option is off by default.

10. disabled

This optional keyword is allowed with any policy to avoid packet processing. This option disables the preproces-
sor. When the preprocessor is disabled only the memcap option is applied when specified with the configuration.
The other options are parsed but not used. Any valid configuration may have ”disabled” added to it.

Format

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distrib uted_portscan|all> \
sense_level <low|medium|high> \
watch_ip <IP or IP/CIDR> \
ignore_scanners <IP list> \
ignore_scanned <IP list> \
logfile <path and filename> \
disabled

Example

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan:\

proto { all } \
scan_type { all } \
sense_level { low }

sfPortscan Alert Output

Unified Output In order to get all the portscan information logged with the alert, snort generates a pseudo-packet
and uses the payload portion to store the additional portscan information of priority count, connection count, IP count,
port count, IP range, and port range. The characteristics ofthe packet are:

Src/Dst MAC Addr == MACDAD
IP Protocol == 255
IP TTL == 0

Other than that, the packet looks like the IP portion of the packet that caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload size ofthe packet are equal to the length of the additional
portscan information that is logged. The size tends to be around 100 - 200 bytes.

Open port alerts differ from the other portscan alerts, because open port alerts utilize the tagged packet output system.
This means that if an output system that doesn’t print taggedpackets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload and contains the port that is open.

The sfPortscan alert output was designed to work with unifiedpacket logging, so it is possible to extend favorite Snort
GUIs to display portscan alerts and the additional information in the IP payload using the above packet characteristics.

49

Log File Output Log file output is displayed in the following format, and explained further below:

Time: 09/08-15:07:31.603880
event_id: 2
192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Po rtscan
Priority Count: 0
Connection Count: 200
IP Count: 2
Scanner IP Range: 192.168.169.3:192.168.169.4
Port/Proto Count: 200
Port/Proto Range: 20:47557

If there are open ports on the target, one or more additional tagged packet(s) will be appended:

Time: 09/08-15:07:31.603881
event_ref: 2
192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Event id/Event ref

These fields are used to link an alert with the correspondingOpen Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). The higher the priority count, the more
bad responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src or dst). This is accurate for
connection-based protocols, and is more of an estimate for others. Whether or not a portscan was filtered is
determined here. High connection count and low priority count would indicate filtered (no response received
from target).

4. IP Count

IP Count keeps track of the last IP to contact a host, and increments the count if the next IP is different. For
one-to-one scans, this is a low number. For active hosts thisnumber will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portsweep (one-to-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and increments this number when that changes. We use this
count (along with IP Count) to determine the difference between one-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tuning the detection engine for your network(s). Here are some
tuning tips:

1. Use the watchip, ignore scanners, and ignorescanned options.

It’s important to correctly set these options. Thewatch ip option is easy to understand. The analyst should set
this option to the list of CIDR blocks and IPs that they want towatch. If nowatch ip is defined, sfPortscan will
watch all network traffic.

50

The ignore scanners and ignore scanned options come into play in weeding out legitimate hosts that are
very active on your network. Some of the most common examplesare NAT IPs, DNS cache servers, syslog
servers, and nfs servers. sfPortscan may not generate falsepositives for these types of hosts, but be aware when
first tuning sfPortscan for these IPs. Depending on the type of alert that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweep events, then add it to theignore scanners option.
If the host is generating portscan alerts (and is the host that is being scanned), add it to theignore scanned
option.

2. Filtered scan alerts are much more prone to false positives.

When determining false positives, the alert type is very important. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be much more suspicious of filtered portscans. Many times
this just indicates that a host was very active during the time period in question. If the host continually generates
these types of alerts, add it to theignore scanners list or use a lower sensitivity level.

3. Make use of the Priority Count, Connection Count, IP Count, Port Count, IP Range, and Port Range to
determine false positives.

The portscan alert details are vital in determining the scope of a portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis in assigning a scope level and confidence level, but
for now the user must manually do this. The easiest way to determine false positives is through simple ratio
estimations. The following is a list of ratios to estimate and the associated values that indicate a legitimate scan
and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connections per IP. For portscans,
this ratio should be high, the higher the better. For portsweeps, this ratio should be low.

Port Count / IP Count: This ratio indicates an estimated average of ports connected to per IP. For portscans, this
ratio should be high and indicates that the scanned host’s ports were connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning host connected to few ports but on many hosts.

Connection Count / Port Count: This ratio indicates an estimated average of connections per port. For
portscans, this ratio should be low. This indicates that each connection was to a different port. For portsweeps,
this ratio should be high. This indicates that there were many connections to the same port.

The reason thatPriority Count is not included, is because the priority count is included inthe connection
count and the above comparisons take that into consideration. The Priority Count play an important role in
tuning because the higher the priority count the more likelyit is a real portscan or portsweep (unless the host is
firewalled).

4. If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analyst doesn’t have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sensitivity level, but it’s also important that the portscan detection
engine generate alerts that the analyst will find informative. The low sensitivity level only generates alerts based
on error responses. These responses indicate a portscan andthe alerts generated by the low sensitivity level are
highly accurate and require the least tuning. The low sensitivity level does not catch filtered scans; since these
are more prone to false positives.

2.2.4 RPC Decode

The rpcdecode preprocessor normalizes RPC multiple fragmented records into a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. If stream5 is enabled, it will only process client-side traffic. By
default, it runs against traffic on ports 111 and 32771.

Format

preprocessor rpc_decode: \
<ports> [alert_fragments] \
[no_alert_multiple_requests] \
[no_alert_large_fragments] \
[no_alert_incomplete]

51

Option Description
alert fragments Alert on any fragmented RPC record.
no alert multiple requests Don’t alert when there are multiple records in one packet.
no alert large fragments Don’t alert when the sum of fragmented records exceeds one packet.
no alert incomplete Don’t alert when a single fragment record exceeds the size ofone packet.

2.2.5 Performance Monitor

This preprocessor measures Snort’s real-time and theoretical maximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, either “console” which prints statistics to the console window or
“file” with a file name, where statistics get printed to the specified file name. By default, Snort’s real-time statistics
are processed. This includes:

• Time Stamp

• Drop Rate

• Mbits/Sec (wire) [duplicated below for easy comparison with other rates]

• Alerts/Sec

• K-Pkts/Sec (wire) [duplicated below for easy comparison with other rates]

• Avg Bytes/Pkt (wire) [duplicated below for easy comparisonwith other rates]

• Pat-Matched [percent of data received that Snort processesin pattern matching]

• Syns/Sec

• SynAcks/Sec

• New Sessions Cached/Sec

• Sessions Del fr Cache/Sec

• Current Cached Sessions

• Max Cached Sessions

• Stream Flushes/Sec

• Stream Session Cache Faults

• Stream Session Cache Timeouts

• New Frag Trackers/Sec

• Frag-Completes/Sec

• Frag-Inserts/Sec

• Frag-Deletes/Sec

• Frag-Auto Deletes/Sec [memory DoS protection]

• Frag-Flushes/Sec

• Frag-Current [number of current Frag Trackers]

• Frag-Max [max number of Frag Trackers at any time]

• Frag-Timeouts

• Frag-Faults

52

• Number of CPUs [*** Only if compiled with LINUXSMP ***, the next three appear for each CPU]

• CPU usage (user)

• CPU usage (sys)

• CPU usage (Idle)

• Mbits/Sec (wire) [average mbits of total traffic]

• Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]

• Mbits/Sec (ipreass) [average mbits Snort injects after IP reassembly]

• Mbits/Sec (tcprebuilt) [average mbits Snort injects afterTCP reassembly]

• Mbits/Sec (applayer) [average mbits seen by rules and protocol decoders]

• Avg Bytes/Pkt (wire)

• Avg Bytes/Pkt (ipfrag)

• Avg Bytes/Pkt (ipreass)

• Avg Bytes/Pkt (tcprebuilt)

• Avg Bytes/Pkt (applayer)

• K-Pkts/Sec (wire)

• K-Pkts/Sec (ipfrag)

• K-Pkts/Sec (ipreass)

• K-Pkts/Sec (tcprebuilt)

• K-Pkts/Sec (applayer)

• Total Packets Received

• Total Packets Dropped (not processed)

• Total Packets Blocked (inline)

• Percentage of Packets Dropped

• Total Filtered TCP Packets

• Total Filtered UDP Packets

• Midstream TCP Sessions/Sec

• Closed TCP Sessions/Sec

• Pruned TCP Sessions/Sec

• TimedOut TCP Sessions/Sec

• Dropped Async TCP Sessions/Sec

• TCP Sessions Initializing

• TCP Sessions Established

• TCP Sessions Closing

• Max TCP Sessions (interval)

• New Cached UDP Sessions/Sec

53

• Cached UDP Ssns Del/Sec

• Current Cached UDP Sessions

• Max Cached UDP Sessions

• Current Attribute Table Hosts (Target Based)

• Attribute Table Reloads (Target Based)

• Mbits/Sec (Snort)

• Mbits/Sec (sniffing)

• Mbits/Sec (combined)

• uSeconds/Pkt (Snort)

• uSeconds/Pkt (sniffing)

• uSeconds/Pkt (combined)

• KPkts/Sec (Snort)

• KPkts/Sec (sniffing)

• KPkts/Sec (combined)

The following options can be used with the performance monitor:

• flow - Prints out statistics about the type of traffic and protocoldistributions that Snort is seeing. This option
can produce large amounts of output.

• events - Turns on event reporting. This prints out statistics as to the number of rules that were evaluated and
didn’t match (non-qualified events) vs. the number of rules that were evaluated and matched (qualified events).
A high non-qualified eventto qualified eventratio can indicate there are many rules with either minimal content
or no content that are being evaluated without success. The fast pattern matcher is used to select a set of rules for
evaluation based on the longestcontent or acontent modified with thefast pattern rule option in a rule.
Rules with short, generic contents are more likely to be selected for evaluation than those with longer, more
unique contents. Rules withoutcontent are not filtered via the fast pattern matcher and are always evaluated,
so if possible, adding acontent rule option to those rules can decrease the number of times they need to be
evaluated and improve performance.

• max - Turns on the theoretical maximum performance that Snort calculates given the processor speed and current
performance. This is only valid for uniprocessor machines,since many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

• console - Prints statistics at the console.

• file - Prints statistics in a comma-delimited format to the file that is specified. Not all statistics are output to
this file. You may also usesnortfile which will output into your defined Snort log directory. Bothof these
directives can be overridden on the command line with the-Z or --perfmon-file options. At startup, Snort
will log a distinctive line to this file with a timestamp to allreaders to easily identify gaps in the stats caused by
Snort not running.

• pktcnt - Adjusts the number of packets to process before checking for the time sample. This boosts perfor-
mance, since checking the time sample reduces Snort’s performance. By default, this is 10000.

• time - Represents the number of seconds between intervals.

• accumulate or reset - Defines which type of drop statistics are kept by the operating system. By default,
reset is used.

• atexitonly - Dump stats for entire life of Snort.

54

• max file size - Defines the maximum size of the comma-delimited file. Beforethe file exceeds this size, it
will be rolled into a new date stamped file of the format YYYY-MM-DD, followed by YYYY-MM-DD.x, where
x will be incremented each time the comma delimited file is rolled over. The minimum is 4096 bytes and the
maximum is 2147483648 bytes (2GB). The default is the same asthe maximum.

• flow-ip - Collects IP traffic distribution statistics based on host pairs. For each pair of hosts for which IP traffic
has been seen, the following statistics are collected for both directions (A to B and B to A):

– TCP Packets

– TCP Traffic in Bytes

– TCP Sessions Established

– TCP Sessions Closed

– UDP Packets

– UDP Traffic in Bytes

– UDP Sessions Created

– Other IP Packets

– Other IP Traffic in Bytes

These statistics are printed and reset at the end of each interval.

• flow-ip-file - Prints the flow IP statistics in a comma-delimited format tothe file that is specified. All of the
statistics mentioned above, as well as the IP addresses of the host pairs in human-readable format, are included.

• flow-ip-memcap - Sets the memory cap on the hash table used to store IP traffic statistics for host pairs. Once
the cap has been reached, the table will start to prune the statistics for the least recently seen host pairs to free
memory. This value is in bytes and the default value is 52428800 (50MB).

Examples

preprocessor perfmonitor: \
time 30 events flow file stats.profile max console pktcnt 10 000

preprocessor perfmonitor: \
time 300 file /var/tmp/snortstat pktcnt 10000

preprocessor perfmonitor: \
time 30 flow-ip flow-ip-file flow-ip-stats.csv pktcnt 100 0

2.2.6 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applications. Given a data buffer, HTTP Inspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTP Inspect works on both client requests and server responses.

The current version of HTTP Inspect only handles stateless processing. This means that HTTP Inspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if packets are not reassembled. This works fine when there is
another module handling the reassembly, but there are limitations in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various reassembly modules.

HTTP Inspect has a very “rich” user configuration. Users can configure individual HTTP servers with a variety of
options, which should allow the user to emulate any type of web server. Within HTTP Inspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration options that determine the global functioning of HTTP Inspect. The
following example gives the generic global configuration format:

55

Format

preprocessor http_inspect: \
global \
iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert] \

[max_gzip_mem <num>] \
[compress_depth <num>] [decompress_depth <num>] \
disabled

You can only have a single global configuration, you’ll get anerror if you try otherwise.

Configuration

1. iis unicode map <map filename > [codemap <integer >]

This is the globaliis unicode mapfile. Theiis unicode map is a required configuration parameter. The map
file can reside in the same directory assnort.conf or be specified via a fully-qualified path to the map file.

The iis unicode map file is a Unicode codepoint map which tells HTTP Inspect whichcodepage to use when
decoding Unicode characters. For US servers, the codemap isusually 1252.

A Microsoft US Unicode codepoint map is provided in the Snortsourceetc directory by default. It is called
unicode.map and should be used if no other codepoint map is available. A tool is supplied with Snort to
generate custom Unicodemaps--ms unicode generator.c , which is available athttp://www.snort.org/
dl/contrib/ .

△! NOTE
Remember that this configuration is for the global IIS Unicode map, individual servers can reference their
own IIS Unicode map.

2. detect anomalous servers

This global configuration option enables generic HTTP server traffic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don’t turn this on if you don’t have a default server configuration that
encompasses all of the HTTP server ports that your users might access. In the future, we want to limit this to
specific networks so it’s more useful, but for right now, thisinspects all network traffic. This option is turned off
by default.

3. proxy alert

This enables global alerting on HTTP server proxy usage. By configuring HTTP Inspect servers and enabling
allow proxy use , you will only receive proxy use alerts for web users that aren’t using the configured proxies
or are using a rogue proxy server.

Please note that if users aren’t required to configure web proxy use, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy environments. Blind firewall proxies don’t count.

4. compress depth <integer > This option specifies the maximum amount of packet payload todecompress.
This value can be set from 1 to 65535. The default for this option is 1460.

5. decompress depth <integer > This option specifies the maximum amount of decompressed data to obtain
from the compressed packet payload. This value can be set from 1 to 65535. The default for this option is 2920.

6. max gzip mem

This option determines (in bytes) the maximum amount of memory the HTTP Inspect preprocessor will use for
decompression. This value can be set from 3276 bytes to 100MB. This option along withcompress depth and

56

decompress depth determines the gzip sessions that will be decompressed at any given instant. The default
value for this option is 838860.

△! NOTE
It is suggested to set this value such that the max gzip session calculated as follows is at least 1.
max gzip session =max gzip mem/(decompress depth + compress depth)

7. disabled

This optional keyword is allowed with any policy to avoid packet processing. This option disables the preproces-
sor. When the preprocessor is disabled only the ”maxgzip mem”, ”compressdepth” and ”decompressdepth”
options are applied when specified with the configuration. Other options are parsed but not used. Any valid
configuration may have ”disabled” added to it.

Example Global Configuration

preprocessor http_inspect: \
global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations: default and by IP address.

Default This configuration supplies the default server configuration for any server that is not individually configured.
Most of your web servers will most likely end up using the default configuration.

Example Default Configuration

preprocessor http_inspect_server: \
server default profile all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server: \
server 10.1.1.1 profile all ports { 80 }

Configuration by Multiple IP Addresses This format is very similar to “Configuration by IP Address”,the only
difference being that multiple IPs can be specified via a space separated list. There is a limit of 40 IP addresses or
CIDR notations perhttp inspect server line.

Example Multiple IP Configuration

preprocessor http_inspect_server: \
server { 10.1.1.1 10.2.2.0/24 } profile all ports { 80 }

57

Server Configuration Options

Important: Some configuration options have an argument of ‘yes’ or ‘no’. This argument specifies whether the user
wants the configuration option to generate an HTTP Inspect alert or not. The ‘yes/no’ argument does not specify
whether the configuration option itself is on or off, only thealerting functionality. In other words, whether set to ‘yes’
or ’no’, HTTP normalization will still occur, and rules based on HTTP traffic will still trigger.

1. profile <all |apache |iis |iis5 0|iis4 0>

Users can configure HTTP Inspect by using pre-defined HTTP server profiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server, but are not required for proper operation.

There are five profiles available: all, apache, iis, iis50, and iis40.

1-A. all

Theall profile is meant to normalize the URI using most of the common tricks available. We alert on the
more serious forms of evasions. This is a great profile for detecting all types of attacks, regardless of the
HTTP server.profile all sets the configuration options described in Table 2.3.

Table 2.3: Options for the “all” Profile
Option Setting
serverflow depth 300
client flow depth 300
postdepth 0
chunk encoding alert on chunks larger than 500000 bytes
iis unicodemap codepoint map in the global configuration
ASCII decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
apache whitespace on, alert off
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints on, alert on
iis backslash on, alert off
iis delimiter on, alert off
webroot on, alert on
non strict URL parsing on
tab uri delimiter is set
max headerlength 0, header length not checked
max headers 0, number of headers not checked

1-B. apache

Theapache profile is used for Apache web servers. This differs from theiis profile by only accepting
UTF-8 standard Unicode encoding and not accepting backslashes as legitimate slashes, like IIS does.
Apache also accepts tabs as whitespace.profile apache sets the configuration options described in
Table 2.4.

1-C. iis

The iis profile mimics IIS servers. So that means we use IIS Unicode codemaps for each server, %u
encoding, bare-byte encoding, double decoding, backslashes, etc. profile iis sets the configuration
options described in Table 2.5.

1-D. iis4 0, iis5 0

In IIS 4.0 and IIS 5.0, there was a double decoding vulnerability. These two profiles are identical toiis ,
except they will alert by default if a URL has a double encoding. Double decode is not supported in IIS
5.1 and beyond, so it’s disabled by default.

58

Table 2.4: Options for theapache Profile
Option Setting
serverflow depth 300
client flow depth 300
postdepth 0
chunk encoding alert on chunks larger than 500000 bytes
ASCII decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
apache whitespace on, alert on
utf 8 encoding on, alert off
non strict url parsing on
tab uri delimiter is set
max headerlength 0, header length not checked
max headers 0, number of headers not checked

1-E. default, no profile

The default options used by HTTP Inspect do not use a profile and are described in Table 2.6.

Profiles must be specified as the first server option and cannotbe combined with any other options except:

• ports

• iis unicode map

• allow proxy use

• server flow depth

• client flow depth

• post depth

• no alerts

• inspect uri only

• oversize dir length

• normalize headers

• normalize cookies

• normalize utf

• max header length

• max headers

• extended response inspection

• enable cookie

• inspect gzip

• unlimited decompress

• enable xff

• http methods

These options must be specified after theprofile option.

Example

preprocessor http_inspect_server: \
server 1.1.1.1 profile all ports { 80 3128 }

2. ports {<port > [<port >< ... >]}

This is how the user configures which ports to decode on the HTTP server. However, HTTPS traffic is encrypted
and cannot be decoded with HTTP Inspect. To ignore HTTPS traffic, use the SSL preprocessor.

59

Table 2.5: Options for theiis Profile
Option Setting
serverflow depth 300
client flow depth 300
postdepth -1
chunk encoding alert on chunks larger than 500000 bytes
iis unicodemap codepoint map in the global configuration
ASCII decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints on, alert on
iis backslash on, alert off
iis delimiter on, alert on
apache whitespace on, alert on
non strict URL parsing on
max headerlength 0, header length not checked
max headers 0, number of headers not checked

3. iis unicode map <map filename > codemap <integer >

The IIS Unicode map is generated by the program msunicodegenerator.c. This program is located on the
Snort.org web site athttp://www.snort.org/dl/contrib/ directory. Executing this program generates a
Unicode map for the system that it was run on. So, to get the specific Unicode mappings for an IIS web server,
you run this program on that server and use that Unicode map inthis configuration.

When using this option, the user needs to specify the file thatcontains the IIS Unicode map and also specify
the Unicode map to use. For US servers, this is usually 1252. But the msunicodegenerator program tells you
which codemap to use for you server; it’s the ANSI code page. You can select the correct code page by looking
at the available code pages that the msunicodegenerator outputs.

4. extended response inspection This enables the extended HTTP response inspection. The default http re-
sponse inspection does not inspect the various fields of a HTTP response. By turning this option the HTTP
response will be thoroughly inspected. The different fieldsof a HTTP response such as status code, status
message, headers, cookie (when enablecookie is configured) and body are extracted and saved into buffers.
Different rule options are provided to inspect these buffers.

△! NOTE
When this option is turned on, if the HTTP response packet hasa body then any content pattern matches
(without http modifiers) will search the response body ((decompressed in case of gzip) and not the entire
packet payload. To search for patterns in the header of the response, one should use the http modifiers with
content such ashttp header , http stat code , http stat msg andhttp cookie .

5. enable cookie This options turns on the cookie extraction from HTTP requests and HTTP response. By default
the cookie inspection and extraction will be turned off. TheCookie header line is extracted and stored in HTTP
Cookie buffer for HTTP requests andSet-Cookie is extracted and stored in HTTP Cookie buffer for HTTP
responses. In both cases the header name is also stored alongwith the cookie.

6. inspect gzip This option specifies the HTTP inspect module to uncompress the compressed data(gzip/deflate)
in HTTP response. You should select the config option ”extended responseinspection” before configuring this
option. Decompression is done across packets. So the decompression will end when either the ’compressdepth’
or ’decompressdepth’ is reached or when the compressed data ends. When the compressed data is spanned

60

Table 2.6: Default HTTP Inspect Options
Option Setting
port 80
serverflow depth 300
client flow depth 300
postdepth -1

chunk encoding alert on chunks larger than 500000 bytes
ASCII decoding on, alert off
utf 8 encoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
iis backslash on, alert off
apache whitespace on, alert off
iis delimiter on, alert off
non strict URL parsing on
max headerlength 0, header length not checked
max headers 0, number of headers not checked

across multiple packets, the state of the last decompressedpacket is used to decompressed the data of the next
packet. But the decompressed data are individually inspected. (i.e. the decompressed data from different packets
are not combined while inspecting). Also the amount of decompressed data that will be inspected depends on
the ’serverflow depth’ configured.

△! NOTE

To enable compression of HTTP server response, Snort shouldbe configured with the –enable-zlib flag.

7. unlimited decompress This option enables the user to decompress unlimited gzip data (across multiple pack-
ets).Decompression will stop when the compressed data endsor when a out of sequence packet is received.
To ensure unlimited decompression, it is suggested to set the ’compressdepth’ and ’decompressdepth’ to its
maximum values. The decompression in a single packet is still limited by the ’compressdepth’ and ’decom-
pressdepth’.

8. enable xff

This option enables Snort to parse and log the original client IP present in the X-Forwarded-For or True-Client-
IP HTTP request headers along with the generated events. TheXFF/True-Client-IP Original client IP address is
logged only with unified2 output and is not logged with console (-A cmg) output.

△! NOTE
The original client IP from XFF/True-Client-IP in unified2 logs can be viewed using the tool u2spewfoo.
This tool is present in the tools/u2spewfoo directory of snort source tree.

9. server flow depth <integer >

This specifies the amount of server response payload to inspect. Whenextended response inspection is
turned on, it is applied to the HTTP response body (decompressed data wheninspect gzip is turned on)
and not the HTTP headers. Whenextended response inspection is turned off theserver flow depth is
applied to the entire HTTP response (including headers). Unlike client flow depth this option is applied
per TCP session. This option can be used to balance the needs of IDS performance and level of inspection of
HTTP server response data. Snort rules are targeted at HTTP server response traffic and when used with a small
flow depth value may cause false negatives. Most of these rules target either the HTTP header, or the content

61

that is likely to be in the first hundred or so bytes of non-header data. Headers are usually under 300 bytes long,
but your mileage may vary. It is suggested to set theserver flow depth to its maximum value.

This value can be set from -1 to 65535. A value of -1 causes Snort to ignore all server side traffic for ports defined
in ports whenextended response inspection is turned off. When theextended response inspection is
turned on, value of -1 causes Snort to ignore the HTTP response body data and not the HTTP headers. Inversely,
a value of 0 causes Snort to inspect all HTTP server payloads defined in ”ports” (note that this will likely
slow down IDS performance). Values above 0 tell Snort the number of bytes to inspect of the server response
(excluding the HTTP headers whenextended response inspection is turned on) in a given HTTP session.
Only packets payloads starting with ’HTTP’ will be considered as the first packet of a server response. If less
than flowdepth bytes are in the payload of the HTTP response packets ina given session, the entire payload
will be inspected. If more than flowdepth bytes are in the payload of the HTTP response packet in asession
only flow depth bytes of the payload will be inspected for that session. Rules that are meant to inspect data in
the payload of the HTTP response packets in a session beyond 65535 bytes will be ineffective unless flowdepth
is set to 0. The default value forserver flow depth is 300. Note that the 65535 byte maximum flowdepth
applies to stream reassembled packets as well. It is suggested to set theserver flow depth to its maximum
value.

△! NOTE
server flow depth is the same as the oldflow depth option, which will be deprecated in a future release.

10. client flow depth <integer >

This specifies the amount of raw client request payload to inspect. This value can be set from -1 to 1460. Unlike
server flow depth this value is applied to the first packet of the HTTP request. It is not a session based flow
depth. It has a default value of 300. It primarily eliminatesSnort from inspecting larger HTTP Cookies that
appear at the end of many client request Headers.

A value of -1 causes Snort to ignore all client side traffic forports defined in ”ports.” Inversely, a value of 0
causes Snort to inspect all HTTP client side traffic defined in”ports” (note that this will likely slow down IDS
performance). Values above 0 tell Snort the number of bytes to inspect in the first packet of the client request.
If less than flowdepth bytes are in the TCP payload (HTTP request) of the first packet, the entire payload will
be inspected. If more than flowdepth bytes are in the payload of the first packet only flowdepth bytes of the
payload will be inspected. Rules that are meant to inspect data in the payload of the first packet of a client
request beyond 1460 bytes will be ineffective unless flowdepth is set to 0. Note that the 1460 byte maximum
flow depth applies to stream reassembled packets as well. It is suggested to set theclient flow depth to its
maximum value.

11. post depth <integer >

This specifies the amount of data to inspect in a client post message. The value can be set from -1 to 65495. The
default value is -1. A value of -1 causes Snort to ignore all the data in the post message. Inversely, a value of 0
causes Snort to inspect all the client post message. This increases the performance by inspecting only specified
bytes in the post message.

12. ascii <yes |no>

The ascii decode option tells us whether to decode encoded ASCII chars, a.k.a %2f = /, %2e = ., etc. It is
normal to see ASCII encoding usage in URLs, so it is recommended that you disable HTTP Inspect alerting for
this option.

13. extended ascii uri

This option enables the support for extended ASCII codes in the HTTP request URI. This option is turned off
by default and is not supported with any of the profiles.

14. utf 8 <yes |no>

Theutf-8 decode option tells HTTP Inspect to decode standard UTF-8 Unicode sequences that are in the URI.
This abides by the Unicode standard and only uses % encoding.Apache uses this standard, so for any Apache
servers, make sure you have this option turned on. As for alerting, you may be interested in knowing when you
have a UTF-8 encoded URI, but this will be prone to false positives as legitimate web clients use this type of
encoding. Whenutf 8 is enabled, ASCII decoding is also enabled to enforce correct functioning.

62

15. u encode <yes |no>

This option emulates the IIS %u encoding scheme. How the %u encoding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 characters, like %uxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value can most definitely be ASCII. An ASCII character is
encoded like %u002f = /, %u002e = ., etc. If no iisunicodemap is specified before or after this option, the
default codemap is used.

You should alert on %u encodings, because we are not aware of any legitimate clients that use this encoding. So
it is most likely someone trying to be covert.

16. bare byte <yes |no>

Bare byte encoding is an IIS trick that uses non-ASCII characters as valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values haveto be encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret non-standard encodings correctly.

The alert on this decoding should be enabled, because there are no legitimate clients that encode UTF-8 this
way since it is non-standard.

17. base36 <yes |no>

This is an option to decode base36 encoded chars. This optionis based on info from:

http://www.yk.rim.or.jp/ ˜ shikap/patch/spp_http_decode.patch .

If %u encoding is enabled, this option will not work. You haveto use thebase36 option with theutf 8 option.
Don’t use the %u option, because base36 won’t work. Whenbase36 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

18. iis unicode <yes |no>

The iis unicode option turns on the Unicode codepoint mapping. If there is noiis unicodemap option spec-
ified with the server config,iis unicode uses the default codemap. Theiis unicode option handles the
mapping of non-ASCII codepoints that the IIS server acceptsand decodes normal UTF-8 requests.

You should alert on theiis unicode option , because it is seen mainly in attacks and evasion attempts. When
iis unicode is enabled, ASCII and UTF-8 decoding are also enabled to enforce correct decoding. To alert on
UTF-8 decoding, you must enable also enableutf 8 yes .

19. double decode <yes |no>

Thedouble decode option is once again IIS-specific and emulates IIS functionality. How this works is that IIS
does two passes through the request URI, doing decodes in each one. In the first pass, it seems that all types of
iis encoding is done: utf-8 unicode, ASCII, bare byte, and %u. In the second pass, the following encodings are
done: ASCII, bare byte, and %u. We leave out utf-8 because I think how this works is that the % encoded utf-8
is decoded to the Unicode byte in the first pass, and then UTF-8is decoded in the second stage. Anyway, this
is really complex and adds tons of different encodings for one character. Whendouble decode is enabled, so
ASCII is also enabled to enforce correct decoding.

20. non rfc char {<byte > [<byte ... >]}

This option lets users receive an alert if certain non-RFC chars are used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we can alert on that. Please use this option with care,
because you could configure it to say, alert on all ‘/’ or something like that. It’s flexible, so be careful.

21. multi slash <yes |no>

This option normalizes multiple slashes in a row, so something like: “foo/////////bar” get normalized to “foo/bar.”

If you want an alert when multiple slashes are seen, then configure with ayes ; otherwise, useno.

22. iis backslash <yes |no>

Normalizes backslashes to slashes. This is again an IIS emulation. So a request URI of “/foo\bar” gets normal-
ized to “/foo/bar.”

23. directory <yes |no>

This option normalizes directory traversals and self-referential directories.

The directory:

63

/foo/fake_dir/../bar

gets normalized to:

/foo/bar

The directory:

/foo/./bar

gets normalized to:

/foo/bar

If you want to configure an alert, specifyyes , otherwise, specifyno. This alert may give false positives, since
some web sites refer to files using directory traversals.

24. apache whitespace <yes |no>

This option deals with the non-RFC standard of using tab for aspace delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alerts onthis option may be interesting, but may also be
false positive prone.

25. iis delimiter <yes |no>

This started out being IIS-specific, but Apache takes this non-standard delimiter was well. Since this is common,
we always take this as standard since the most popular web servers accept it. But you can still get an alert on
this option.

26. chunk length <non-zero positive integer >

This option is an anomaly detector for abnormally large chunk sizes. This picks up the Apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses chunk encoding.

27. no pipeline req

This option turns HTTP pipeline decoding off, and is a performance enhancement if needed. By default, pipeline
requests are inspected for attacks, but when this option is enabled, pipeline requests are not decoded and ana-
lyzed per HTTP protocol field. It is only inspected with the generic pattern matching.

28. non strict

This option turns on non-strict URI parsing for the broken way in which Apache servers will decode a URI.
Only use this option on servers that will accept URIs like this: ”get /index.html alsjdfk alsj lj aj la jsj s\n”. The
non strict option assumes the URI is between the first and second space even if there is no valid HTTP identifier
after the second space.

29. allow proxy use

By specifying this keyword, the user is allowing proxy use onthis server. This means that no alert will be
generated if theproxy alert global keyword has been used. If the proxyalert keyword is not enabled, then
this option does nothing. Theallow proxy use keyword is just a way to suppress unauthorized proxy use for
an authorized server.

30. no alerts

This option turns off all alerts that are generated by the HTTP Inspect preprocessor module. This has no effect
on HTTP rules in the rule set. No argument is specified.

31. oversize dir length <non-zero positive integer >

This option takes a non-zero positive integer as an argument. The argument specifies the max char directory
length for URL directory. If a url directory is larger than this argument size, an alert is generated. A good
argument value is 300 characters. This should limit the alerts to IDS evasion type attacks, like whisker -i 4.

64

32. inspect uri only

This is a performance optimization. When enabled, only the URI portion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the web attacks, you’ll catch most of the attacks. So if
you need extra performance, enable this optimization. It’simportant to note that if this option is used without
anyuricontent rules, then no inspection will take place. This is obvious since the URI is only inspected with
uricontent rules, and if there are none available, then there is nothingto inspect.

For example, if we have the following rule set:

alert tcp any any -> any 80 (msg:"content"; content: "foo";)

and the we inspect the following URI:

get /foo.htm http/1.0\r\n\r\n

No alert will be generated wheninspect uri only is enabled. Theinspect uri only configuration turns off
all forms of detection excepturicontent inspection.

33. max header length <positive integer up to 65535 >

This option takes an integer as an argument. The integer is the maximum length allowed for an HTTP client
request header field. Requests that exceed this length will cause a ”Long Header” alert. This alert is off by
default. To enable, specify an integer argument to maxheaderlength of 1 to 65535. Specifying a value of 0 is
treated as disabling the alert.

34. webroot <yes |no>

This option generates an alert when a directory traversal traverses past the web server root directory. This
generates much fewer false positives than the directory option, because it doesn’t alert on directory traversals
that stay within the web server directory structure. It onlyalerts when the directory traversals go past the web
server root directory, which is associated with certain webattacks.

35. tab uri delimiter

This option turns on the use of the tab character (0x09) as a delimiter for a URI. Apache accepts tab as a
delimiter; IIS does not. For IIS, a tab in the URI should be treated as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space character (0x20) precedes it. No argument is specified.

36. normalize headers

This option turns on normalization for HTTP Header Fields, not including Cookies (using the same configuration
parameters as the URI normalization (ie, multi-slash, directory, etc.). It is useful for normalizing Referrer URIs
that may appear in the HTTP Header.

37. normalize cookies

This option turns on normalization for HTTP Cookie Fields (using the same configuration parameters as the
URI normalization (ie, multi-slash, directory, etc.). It is useful for normalizing data in HTTP Cookies that may
be encoded.

38. normalize utf

This option turns on normalization of HTTP response bodies where the Content-Type header lists the character
set as ”utf-16le”, ”utf-16be”, ”utf-32le”, or ”utf-32be”.HTTP Inspect will attempt to normalize these back into
8-bit encoding, generating an alert if the extra bytes are non-zero.

39. max headers <positive integer up to 1024 >

This option takes an integer as an argument. The integer is the maximum number of HTTP client request header
fields. Requests that contain more HTTP Headers than this value will cause a ”Max Header” alert. The alert is
off by default. To enable, specify an integer argument to maxheaders of 1 to 1024. Specifying a value of 0 is
treated as disabling the alert.

65

40. http methods {cmd[cmd]} This specifies additional HTTP Request Methods outside of those checked by
default within the preprocessor (GET and POST). The list should be enclosed within braces and delimited by
spaces, tabs, line feed or carriage return. The config option, braces and methods also needs to be separated by
braces.

http_methods { PUT CONNECT }

△! NOTE
Please note the maximum length for a method name is 7

Examples

preprocessor http_inspect_server: \
server 10.1.1.1 \
ports { 80 3128 8080 } \
server_flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: \
server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { 0x00 } \
server_flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server: \
server default \
profile all \
ports { 80 8080 }

2.2.7 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applications. Given a data buffer, SMTP will decode the buffer
and find SMTP commands and responses. It will also mark the command, data header data body sections, and TLS
data.

SMTP handles stateless and stateful processing. It saves state between individual packets. However maintaining
correct state is dependent on the reassembly of the client side of the stream (ie, a loss of coherent stream data results
in a loss of state).

66

Configuration

SMTP has the usual configuration items, such asport and inspection type . Also, SMTP command lines can be
normalized to remove extraneous spaces. TLS-encrypted traffic can be ignored, which improves performance. In
addition, regular mail data can be ignored for an additionalperformance boost. Since so few (none in the current snort
rule set) exploits are against mail data, this is relativelysafe to do and can improve the performance of data inspection.

The configuration options are described below:

1. ports { <port> [<port>] ... }

This specifies on what ports to check for SMTP data. Typically, this will include 25 and possibly 465, for
encrypted SMTP.

2. inspection type <stateful | stateless>

Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for morethan one space character after a command. Space
characters are defined as space (ASCII 0x20) or tab (ASCII 0x09).

all checks all commands

none turns off normalization for all commands.

cmds just checks commands listed with thenormalize cmds parameter.

4. ignore data

Ignore data section of mail (except for mail headers) when processing rules.

5. ignore tls data

Ignore TLS-encrypted data when processing rules.

6. max command line len <int>

Alert if an SMTP command line is longer than this value. Absence of this option or a ”0” means never alert on
command line length. RFC 2821 recommends 512 as a maximum command line length.

7. max header line len <int>

Alert if an SMTP DATA header line is longer than this value. Absence of this option or a ”0” means never alert
on data header line length. RFC 2821 recommends 1024 as a maximum data header line length.

8. max response line len <int>

Alert if an SMTP response line is longer than this value. Absence of this option or a ”0” means never alert on
response line length. RFC 2821 recommends 512 as a maximum response line length.

9. alt max command line len <int> { <cmd> [<cmd>] }

Overridesmax command line len for specific commands.

10. no alerts

Turn off all alerts for this preprocessor.

11. invalid cmds { <Space-delimited list of commands> }

Alert if this command is sent from client side. Default is an empty list.

12. valid cmds { <Space-delimited list of commands> }

List of valid commands. We do not alert on commands in this list. Default is an empty list, but preprocessor has
this list hard-coded:

{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY EXPN } { HELO
HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEU} { STARTTLS TICK
TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE} { XADR XAUTH XCIR XEXCH50 XGEN
XLICENSE XQUE XSTA XTRN XUSR}

67

13. alert unknown cmds

Alert if we don’t recognize command. Default is off.

14. normalize cmds { <Space-delimited list of commands> }

Normalize this list of commands Default is{ RCPT VRFY EXPN}.

15. xlink2state { enable | disable [drop] }

Enable/disable xlink2state alert. Drop if alerted. Default is enable .

16. print cmds

List all commands understood by the preprocessor. This not normally printed out with the configuration because
it can print so much data.

17. disabled

Disables the SMTP preprocessor in a policy. This is useful when specifying themax mime depth andmax mime mem
in default policy without turning on the SMTP preprocessor.

18. enable mime decoding

Enables Base64 decoding of Mime attachments/data. Multiple base64 encoded MIME attachments/data in
one packet are pipelined. When stateful inspection is turned on the base64 encoded MIME attachments/data
across multiple packets are decoded too. The decoding of base64 encoded attachments/data ends when either
the max mime depth or maximum MIME sessions (calculated usingmax mime depth andmax mime mem) is
reached or when the encoded data ends. The decoded data is available for detection using the rule option
file data:mime . See 3.5.24 rule option for more details.

19. max mime depth <int>

Specifies the maximum number of base64 encoded data to decodeper SMTP session. The option take values
ranging from 5 to 20480 bytes. The default value for this in snort in 1460 bytes.

20. max mime mem <int>

This option determines (in bytes) the maximum amount of memory the SMTP preprocessor will use for decoding
base64 encode MIME attachments/data. This value can be set from 3276 bytes to 100MB. This option along
with max mime depth determines the base64 encoded MIME/SMTP sessions that willbe decoded at any given
instant. The default value for this option is 838860.

Note: It is suggested to set this value such that the max mime session calculated as follows is atleast 1.

max mime session =max mime mem/(max mime depth + max decoded bytes)

max decoded bytes = (max mime depth /4)*3

Also note that these values formax mime memandmax mime depth need to be same across all policy. Hence
user needs to define it in the default policy with the new keyword disabled (used to disable SMTP preprocessor
in a policy)

Example

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
ignore_data \
ignore_tls_data \
max_command_line_len 512 \
max_header_line_len 1024 \
max_response_line_len 512 \
no_alerts \
alt_max_command_line_len 300 { RCPT } \

68

invalid_cmds { } \
valid_cmds { } \
xlink2state { disable } \
print_cmds

preprocessor SMTP: \
max_mime_depth 100 \
max_mime_mem 4000 \

disabled

Default

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }

Note

RCPT TO: andMAIL FROM: are SMTP commands. For the preprocessor configuration, theyare referred to as RCPT
and MAIL, respectively. Within the code, the preprocessor actually maps RCPT and MAIL to the correct command
name.

2.2.8 FTP/Telnet Preprocessor

FTP/Telnet is an improvement to the Telnet decoder and provides stateful inspection capability for both FTP and
Telnet data streams. FTP/Telnet will decode the stream, identifying FTP commands and responses and Telnet escape
sequences and normalize the fields. FTP/Telnet works on bothclient requests and server responses.

FTP/Telnet has the capability to handle stateless processing, meaning it only looks for information on a packet-by-
packet basis.

The default is to run FTP/Telnet in stateful inspection mode, meaning it looks for information and handles reassembled
data correctly.

FTP/Telnet has a very “rich” user configuration, similar to that of HTTP Inspect (See 2.2.6). Users can configure
individual FTP servers and clients with a variety of options, which should allow the user to emulate any type of FTP
server or FTP Client. Within FTP/Telnet, there are four areas of configuration: Global, Telnet, FTP Client, and FTP
Server.

△! NOTE
Some configuration options have an argument ofyes or no. This argument specifies whether the user wants
the configuration option to generate a ftptelnet alert or not. The presence of the option indicates the option
itself is on, while theyes/no argument applies to the alerting functionality associatedwith that option.

Global Configuration

The global configuration deals with configuration options that determine the global functioning of FTP/Telnet. The
following example gives the generic global configuration format:

69

Format

preprocessor ftp_telnet: \
global \
inspection_type stateful \
encrypted_traffic yes \
check_encrypted

You can only have a single global configuration, you’ll get anerror if you try otherwise. The FTP/Telnet global
configuration must appear before the other three areas of configuration.

Configuration

1. inspection type

This indicates whether to operate in stateful or stateless mode.

2. encrypted traffic <yes|no >

This option enables detection and alerting on encrypted Telnet and FTP command channels.

△! NOTE
Wheninspection type is in stateless mode, checks for encrypted traffic will occuron every packet, whereas
in stateful mode, a particular session will be noted as encrypted and not inspected any further.

3. check encrypted

Instructs the preprocessor to continue to check an encrypted session for a subsequent command to cease encryp-
tion.

Example Global Configuration

preprocessor ftp_telnet: \
global inspection_type stateful encrypted_traffic no

Telnet Configuration

The telnet configuration deals with configuration options that determine the functioning of the Telnet portion of the
preprocessor. The following example gives the generic telnet configuration format:

Format

preprocessor ftp_telnet_protocol: \
telnet \
ports { 23 } \
normalize \
ayt_attack_thresh 6 \
detect_anomalies

There should only be a single telnet configuration, and subsequent instances will override previously set values.

70

Configuration

1. ports {<port > [<port >< ... >]}

This is how the user configures which ports to decode as telnettraffic. SSH tunnels cannot be decoded, so adding
port 22 will only yield false positives. Typically port 23 will be included.

2. normalize

This option tells the preprocessor to normalize the telnet traffic by eliminating the telnet escape sequences. It
functions similarly to its predecessor, the telnetdecode preprocessor. Rules written with ’raw’ content options
will ignore the normalized buffer that is created when this option is in use.

3. ayt attack thresh < number >

This option causes the preprocessor to alert when the numberof consecutive telnet Are You There (AYT)
commands reaches the number specified. It is only applicablewhen the mode is stateful.

4. detect anomalies

In order to support certain options, Telnet supports subnegotiation. Per the Telnet RFC, subnegotiation begins
with SB (subnegotiation begin) and must end with an SE (subnegotiation end). However, certain implementa-
tions of Telnet servers will ignore the SB without a corresponding SE. This is anomalous behavior which could
be an evasion case. Being that FTP uses the Telnet protocol onthe control connection, it is also susceptible to
this behavior. Thedetect anomalies option enables alerting on Telnet SB without the corresponding SE.

Example Telnet Configuration

preprocessor ftp_telnet_protocol: \
telnet ports { 23 } normalize ayt_attack_thresh 6

FTP Server Configuration

There are two types of FTP server configurations: default andby IP address.

Default This configuration supplies the default server configuration for any FTP server that is not individually con-
figured. Most of your FTP servers will most likely end up usingthe default configuration.

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: \
ftp server default ports { 21 }

Refer to 73 for the list of options set in default ftp server configuration.

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs
can be configured.

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: \
ftp server 10.1.1.1 ports { 21 } ftp_cmds { XPWD XCWD }

71

FTP Server Configuration Options

1. ports {<port > [<port >< ... >]}

This is how the user configures which ports to decode as FTP command channel traffic. Typically port 21 will
be included.

2. print cmds

During initialization, this option causes the preprocessor to print the configuration for each of the FTP commands
for this server.

3. ftp cmds {cmd[cmd]}

The preprocessor is configured to alert when it sees an FTP command that is not allowed by the server.

This option specifies a list of additional commands allowed by this server, outside of the default FTP command
set as specified in RFC 959. This may be used to allow the use of the ’X’ commands identified in RFC 775, as
well as any additional commands as needed.

For example:

ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

4. def max param len <number>

This specifies the default maximum allowed parameter lengthfor an FTP command. It can be used as a basic
buffer overflow detection.

5. alt max param len <number> {cmd[cmd]}

This specifies the maximum allowed parameter length for the specified FTP command(s). It can be used as a
more specific buffer overflow detection. For example the USERcommand – usernames may be no longer than
16 bytes, so the appropriate configuration would be:

alt_max_param_len 16 { USER }

6. chk str fmt {cmd[cmd]}

This option causes a check for string format attacks in the specified commands.

7. cmd validity cmd < fmt >

This option specifies the valid format for parameters of a given command.

fmt must be enclosed in<>’s and may contain the following:

Value Description
int Parameter must be an integer
number Parameter must be an integer between 1 and 255
char<chars> Parameter must be a single character, one of<chars>
date<datefmt> Parameter follows format specified, where:

n Number
C Character
[] optional format enclosed
| OR
{} choice of options
. + - literal

string Parameter is a string (effectively unrestricted)
hostport Parameter must be a host/port specified, per RFC 959
long hostport Parameter must be a long host port specified, per RFC

1639
extendedhostport Parameter must be an extended host port specified, per

RFC 2428
{}, | One of choices enclosed within, separated by|
{}, [] One of the choices enclosed within{}, optional value

enclosed within[]

72

Examples of the cmdvalidity option are shown below. These examples are the default checks, per RFC 959 and
others performed by the preprocessor.

cmd_validity MODE <char SBC>
cmd_validity STRU <char FRP>
cmd_validity ALLO < int [char R int] >
cmd_validity TYPE < { char AE [char NTC] | char I | char L [numbe r] } >
cmd_validity PORT < host_port >

A cmd validity line can be used to override these defaults and/or add a check for other commands.

This allows additional modes, including mode Z which allow s for
zip-style compression.
cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.
cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] stri ng >

MDTM is an off case that is worth discussing. While not part ofan established standard, certain FTP servers ac-
cept MDTM commands that set the modification time on a file. Themost common among servers that do, accept
a format using YYYYMMDDHHmmss[.uuu]. Some others accept a format using YYYYMMDDHHmmss[+—-
]TZ format. The example above is for the first case (time format as specified in http://www.ietf.org/internet-
drafts/draft-ietf-ftpext-mlst-16.txt)

To check validity for a server that uses the TZ format, use thefollowing:

cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-}n[n]]] str ing >

8. telnet cmds <yes |no>

This option turns on detection and alerting when telnet escape sequences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as an evasion attempt on an FTP command channel.

9. ignore telnet erase cmds <yes|no >

This option allows Snort to ignore telnet escape sequences for erase character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP serversdo not process those telnet escape se-
quences.

10. data chan

This option causes the rest of snort (rules, other preprocessors) to ignore FTP data channel connections. Using
this option means thatNO INSPECTION other than TCP state will be performed on FTP data transfers.It
can be used to improve performance, especially with large file transfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that this option not be used.

Use of the ”datachan” option is deprecated in favor of the ”ignoredatachan” option. ”datachan” will be
removed in a future release.

11. ignore data chan <yes |no>

This option causes the rest of Snort (rules, other preprocessors) to ignore FTP data channel connections. Setting
this option to ”yes” means thatNO INSPECTION other than TCP state will be performed on FTP data transfers.
It can be used to improve performance, especially with largefile transfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that this option not be used.

FTP Server Base Configuration Options

The base FTP server configuration is as follows. Options specified in the configuration file will modify this set of
options. FTP commands are added to the set of allowed commands. The other options will override those in the base
configuration.

73

def_max_param_len 100
ftp_cmds { USER PASS ACCT CWD CDUP SMNT

QUIT REIN TYPE STRU MODE RETR
STOR STOU APPE ALLO REST RNFR
RNTO ABOR DELE RMD MKD PWD LIST

NLST SITE SYST STAT HELP NOOP }
ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC }
ftp_cmds { PORT PASV LPRT LPSV EPRT EPSV }
ftp_cmds { FEAT OPTS }
ftp_cmds { MDTM REST SIZE MLST MLSD }
alt_max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST NOOP }
cmd_validity MODE < char SBC >
cmd_validity STRU < char FRPO [string] >
cmd_validity ALLO < int [char R int] >
cmd_validity TYPE < { char AE [char NTC] | char I | char L [numbe r] } >
cmd_validity PORT < host_port >
cmd_validity LPRT < long_host_port >
cmd_validity EPRT < extd_host_port >
cmd_validity EPSV < [{ ’1’ | ’2’ | ’ALL’ }] >

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client configurations has two types: default, and by IP address.

Default This configuration supplies the default client configuration for any FTP client that is not individually con-
figured. Most of your FTP clients will most likely end up usingthe default configuration.

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client default bounce no max_resp_len 200

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs
can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client 10.1.1.1 bounce yes max_resp_len 500

FTP Client Configuration Options

1. max resp len <number>

This specifies the maximum allowed response length to an FTP command accepted by the client. It can be used
as a basic buffer overflow detection.

2. bounce <yes|no >

This option turns on detection and alerting of FTP bounce attacks. An FTP bounce attack occurs when the FTP
PORT command is issued and the specified host does not match the host of the client.

3. bounce to < CIDR,[port |portlow,porthi] >

74

When the bounce option is turned on, this allows the PORT command to use the IP address (in CIDR format) and
port (or inclusive port range) without generating an alert.It can be used to deal with proxied FTP connections
where the FTP data channel is different from the client.

A few examples:

• Allow bounces to 192.162.1.1 port 20020 – ie, the use ofPORT 192,168,1,1,78,52 .

bounce_to { 192.168.1.1,20020 }

• Allow bounces to 192.162.1.1 ports 20020 through 20040 – ie,the use ofPORT 192,168,1,1,78,xx ,
where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }

• Allow bounces to 192.162.1.1 port 20020 and 192.168.1.2 port 20030.

bounce_to { 192.168.1.1,20020 192.168.1.2,20030 }

• Allows bounces to IPv6 address fe8::5 port 59340.

△! NOTE
IPv6 support must be enabled.

bounce_to { fe8::5,59340 }

4. telnet cmds <yes|no >

This option turns on detection and alerting when telnet escape sequences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as an evasion attempt on an FTP command channel.

5. ignore telnet erase cmds <yes|no >

This option allows Snort to ignore telnet escape sequences for erase character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP clientsdo not process those telnet escape sequences.

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: \
global \
encrypted_traffic yes \
inspection_type stateful

preprocessor ftp_telnet_protocol:\
telnet \
normalize \
ayt_attack_thresh 200

This is consistent with the FTP rules as of 18 Sept 2004.
Set CWD to allow parameter length of 200
MODE has an additional mode of Z (compressed)
Check for string formats in USER & PASS commands
Check MDTM commands that set modification time on the file.

preprocessor ftp_telnet_protocol: \
ftp server default \
def_max_param_len 100 \
alt_max_param_len 200 { CWD } \
cmd_validity MODE < char ASBCZ > \
cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] stri ng > \
chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \

75

telnet_cmds yes \
ignore_data_chan yes

preprocessor ftp_telnet_protocol: \
ftp client default \
max_resp_len 256 \
bounce yes \
telnet_cmds yes

2.2.9 SSH

The SSH preprocessor detects the following exploits: Challenge-Response Buffer Overflow, CRC 32, Secure CRT,
and the Protocol Mismatch exploit.

Both Challenge-Response Overflow and CRC 32 attacks occur after the key exchange, and are therefore encrypted.
Both attacks involve sending a large payload (20kb+) to the server immediately after the authentication challenge. To
detect the attacks, the SSH preprocessor counts the number of bytes transmitted to the server. If those bytes exceed a
predefined limit within a predefined number of packets, an alert is generated. Since the Challenge-Response Overflow
only effects SSHv2 and CRC 32 only effects SSHv1, the SSH version string exchange is used to distinguish the attacks.

The Secure CRT and protocol mismatch exploits are observable before the key exchange.

Configuration

By default, all alerts are disabled and the preprocessor checks traffic on port 22.

The available configuration options are described below.

1. server ports {<port > [<port >< ... >]}

This option specifies which ports the SSH preprocessor should inspect traffic to.

2. max encrypted packets < number >

The number of encrypted packets that Snort will inspect before ignoring a given SSH session. The SSH vulner-
abilities that Snort can detect all happen at the very beginning of an SSH session. Once maxencryptedpackets
packets have been seen, Snort ignores the session to increase performance. The default is set to 25. This value
can be set from 0 to 65535.

3. max client bytes < number >

The number of unanswered bytes allowed to be transferred before alerting on Challenge-Response Overflow or
CRC 32. This number must be hit before maxencryptedpackets packets are sent, or else Snort will ignore the
traffic. The default is set to 19600. This value can be set from0 to 65535.

4. max server version len < number >

The maximum number of bytes allowed in the SSH server versionstring before alerting on the Secure CRT
server version string overflow. The default is set to 80. Thisvalue can be set from 0 to 255.

5. autodetect

Attempt to automatically detect SSH.

6. enable respoverflow

Enables checking for the Challenge-Response Overflow exploit.

7. enable ssh1crc32

Enables checking for the CRC 32 exploit.

8. enable srvoverflow

Enables checking for the Secure CRT exploit.

76

9. enable protomismatch

Enables checking for the Protocol Mismatch exploit.

10. enable badmsgdir

Enable alerts for traffic flowing the wrong direction. For instance, if the presumed server generates client traffic,
or if a client generates server traffic.

11. enable paysize

Enables alerts for invalid payload sizes.

12. enable recognition

Enable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After maxencryptedpackets is reached, the preprocessor will stop
processing traffic for a given session. If Challenge-Response Overflow or CRC 32 false positive, try increasing the
number of required client bytes with maxclient bytes.

Example Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 unacknowledged bytes within 20 encrypted packets for the
Challenge-Response Overflow/CRC32 exploits.

preprocessor ssh: \
server_ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20 \
enable_respoverflow \
enable_ssh1crc32

2.2.10 DNS

The DNS preprocessor decodes DNS Responses and can detect the following exploits: DNS Client RData Overflow,
Obsolete Record Types, and Experimental Record Types.

DNS looks at DNS Response traffic over UDP and TCP and it requires Stream preprocessor to be enabled for TCP
decoding.

Configuration

By default, all alerts are disabled and the preprocessor checks traffic on port 53.

The available configuration options are described below.

1. ports {<port > [<port >< ... >]}

This option specifies the source ports that the DNS preprocessor should inspect traffic.

2. enable obsolete types

Alert on Obsolete (per RFC 1035) Record Types

3. enable experimental types

Alert on Experimental (per RFC 1035) Record Types

4. enable rdata overflow

Check for DNS Client RData TXT Overflow

77

The DNS preprocessor does nothing if none of the 3 vulnerabilities it checks for are enabled. It will not operate on
TCP sessions picked up midstream, and it will cease operation on a session if it loses state because of missing data
(dropped packets).

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS Client RData overflow vulnerability. Do not alert on
obsolete or experimental RData record types.

preprocessor dns: \
ports { 53 } \
enable_rdata_overflow

2.2.11 SSL/TLS

Encrypted traffic should be ignored by Snort for both performance reasons and to reduce false positives. The SSL
Dynamic Preprocessor (SSLPP) decodes SSL and TLS traffic andoptionally determines if and when Snort should
stop inspection of it.

Typically, SSL is used over port 443 as HTTPS. By enabling theSSLPP to inspect port 443 and enabling the noin-
spectencrypted option, only the SSL handshake of each connectionwill be inspected. Once the traffic is determined
to be encrypted, no further inspection of the data on the connection is made.

By default, SSLPP looks for a handshake followed by encrypted traffic traveling to both sides. If one side responds
with an indication that something has failed, such as the handshake, the session is not marked as encrypted. Verifying
that faultless encrypted traffic is sent from both endpointsensures two things: the last client-side handshake packet
was not crafted to evade Snort, and that the traffic is legitimately encrypted.

In some cases, especially when packets may be missed, the only observed response from one endpoint will be TCP
ACKs. Therefore, if a user knows that server-side encrypteddata can be trusted to mark the session as encrypted, the
user should use the ’trustservers’ option, documented below.

Configuration

1. ports {<port > [<port >< ... >]}

This option specifies which ports SSLPP will inspect traffic on.

By default, SSLPP watches the following ports:

• 443 HTTPS

• 465 SMTPS

• 563 NNTPS

• 636 LDAPS

• 989 FTPS

• 992 TelnetS

• 993 IMAPS

• 994 IRCS

• 995 POPS

2. noinspect encrypted

Disable inspection on traffic that is encrypted. Default is off.

3. trustservers

Disables the requirement that application (encrypted) data must be observed on both sides of the session before
a session is marked encrypted. Use this option for slightly better performance if you trust that your servers are
not compromised. This requires thenoinspect encrypted option to be useful. Default is off.

78

Examples/Default Configuration from snort.conf

Enables the SSL preprocessor and tells it to disable inspection on encrypted traffic.

preprocessor ssl: noinspect_encrypted

Rule Options

The following rule options are supported by enabling thessl preprocessor:

ssl_version
ssl_state

ssl version

Thessl version rule option tracks the version negotiated between the endpoints of the SSL encryption. The
list of version identifiers are below, and more than one identifier can be specified, via a comma separated list.
Lists of identifiers are OR’ed together.

The option will match if any one of the OR’ed versions are usedin the SSL connection. To check for two or
more SSL versions in use simultaneously, multiplessl version rule options should be used.
Syntax

ssl_version: <version-list>

version-list = version | version , version-list
version = ["!"] "sslv2" | "sslv3" | "tls1.0" | "tls1.1" | "tls 1.2"

Examples

ssl_version:sslv3;
ssl_version:tls1.0,tls1.1,tls1.2;
ssl_version:!sslv2;

ssl state

Thessl state rule option tracks the state of the SSL encryption during theprocess of hello and key exchange.
The list of states are below. More than one state can be specified, via a comma separated list, and are OR’ed
together.

The option will match if the connection is currently in any one of the OR’ed states. To ensure the connection
has reached each of a set of states, multiple rules using thessl state rule option should be used.
Syntax

ssl_state: <state-list>

state-list = state | state , state-list
state = ["!"] "client_hello" | "server_hello" | "client_ke yx" | "server_keyx" | "unknown"

Examples

ssl_state:client_hello;
ssl_state:client_keyx,server_keyx;
ssl_state:!server_hello;

79

2.2.12 ARP Spoof Preprocessor

The ARP spoof preprocessor decodes ARP packets and detects ARP attacks, unicast ARP requests, and inconsistent
Ethernet to IP mapping.

When no arguments are specified to arpspoof, the preprocessor inspects Ethernet addresses and the addresses in the
ARP packets. When inconsistency occurs, an alert with GID 112 and SID 2 or 3 is generated.

When ”-unicast ” is specified as the argument of arpspoof, the preprocessor checks for unicast ARP requests. An
alert with GID 112 and SID 1 will be generated if a unicast ARP request is detected.

Specify a pair of IP and hardware address as the argument toarpspoof detect host . The host with the IP address
should be on the same layer 2 segment as Snort is. Specify one host IP MAC combo per line. The preprocessor will
use this list when detecting ARP cache overwrite attacks. Alert SID 4 is used in this case.

Format

preprocessor arpspoof[: -unicast]
preprocessor arpspoof_detect_host: ip mac

Option Description
ip IP address.
mac The Ethernet address corresponding to the preceding IP.

Example Configuration

The first example configuration does neither unicast detection nor ARP mapping monitoring. The preprocessor merely
looks for Ethernet address inconsistencies.

preprocessor arpspoof

The next example configuration does not do unicast detectionbut monitors ARP mapping for hosts 192.168.40.1 and
192.168.40.2.

preprocessor arpspoof
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:f0:0f:00
preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

The third example configuration has unicast detection enabled.

preprocessor arpspoof: -unicast
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:f0:0f:00
preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

2.2.13 DCE/RPC 2 Preprocessor

The main purpose of the preprocessor is to perform SMB desegmentation and DCE/RPC defragmentation to avoid
rule evasion using these techniques. SMB desegmentation isperformed for the following commands that can be
used to transport DCE/RPC requests and responses:Write , Write Block Raw , Write and Close , Write AndX ,
Transaction , Transaction Secondary , Read, Read Block Raw andRead AndX. The following transports are sup-
ported for DCE/RPC: SMB, TCP, UDP and RPC over HTTP v.1 proxy and server. New rule options have been im-
plemented to improve performance, reduce false positives and reduce the count and complexity of DCE/RPC based
rules.

80

Dependency Requirements

For proper functioning of the preprocessor:

• Stream session tracking must be enabled, i.e.stream5 . The preprocessor requires a session tracker to keep its
data.

• Stream reassembly must be performed for TCP sessions. If it is decided that a session is SMB or DCE/RPC, ei-
ther through configured ports, servers or autodetecting, thedcerpc2 preprocessor will enable stream reassembly
for that session if necessary.

• IP defragmentation should be enabled, i.e. thefrag3 preprocessor should be enabled and configured.

Target Based

There are enough important differences between Windows andSamba versions that a target based approach has been
implemented. Some important differences:

Named pipe instance tracking

A combination of valid login handle or UID, share handle or TID and file/named pipe handle or FID must be
used to write data to a named pipe. The binding between these is dependent on OS/software version.

Samba 3.0.22 and earlier

Any valid UID and TID, along with a valid FID can be used to makea request, however, if the TID
used in creating the FID is deleted (via a tree disconnect), the FID that was created using this TID
becomes invalid, i.e. no more requests can be written to thatnamed pipe instance.

Samba greater than 3.0.22

Any valid TID, along with a valid FID can be used to make a request. However, only the UID used
in opening the named pipe can be used to make a request using the FID handle to the named pipe
instance. If the TID used to create the FID is deleted (via a tree disconnect), the FID that was created
using this TID becomes invalid, i.e. no more requests can be written to that named pipe instance. If
the UID used to create the named pipe instance is deleted (viaa Logoff AndX), since it is necessary
in making a request to the named pipe, the FID becomes invalid.

Windows 2003

Windows XP

Windows Vista

These Windows versions require strict binding between the UID, TID and FID used to make a request
to a named pipe instance. Both the UID and TID used to open the named pipe instance must be
used when writing data to the same named pipe instance. Therefore, deleting either the UID or TID
invalidates the FID.

Windows 2000

Windows 2000 is interesting in that the first request to a named pipe must use the same binding as that
of the other Windows versions. However, requests after thatfollow the same binding as Samba 3.0.22
and earlier, i.e. no binding. It also follows Samba greater than 3.0.22 in that deleting the UID or TID
used to create the named pipe instance also invalidates it.

Accepted SMB commands

Samba in particular does not recognize certain commands under anIPC$ tree.

Samba (all versions)

Under anIPC$ tree, does not accept:

81

Open

Write And Close

Read

Read Block Raw

Write Block Raw

Windows (all versions)

Accepts all of the above commands under anIPC$ tree.

AndX command chaining

Windows is very strict in what command combinations it allows to be chained. Samba, on the other hand, is
very lax and allows some nonsensical combinations, e.g. multiple logins and tree connects (only one place to
return handles for these), login/logoff and tree connect/tree disconnect. Ultimately, we don’t want to keep track
of data that the server won’t accept. An evasion possibilitywould be accepting a fragment in a request that the
server won’t accept that gets sandwiched between an exploit.

Transaction tracking

The differences between aTransaction request and using one of theWrite* commands to write data to a
named pipe are that (1) aTransaction performs the operations of a write and a read from the named pipe,
whereas in using theWrite* commands, the client has to explicitly send one of theRead* requests to tell the
server to send the response and (2) aTransaction request is not written to the named pipe until all of the data is
received (via potentialTransaction Secondary requests) whereas with theWrite* commands, data is written
to the named pipe as it is received by the server. Multiple Transaction requests can be made simultaneously to
the same named pipe. These requests can also be segmented with Transaction Secondary commands. What
distinguishes them (when the same named pipe is being written to, i.e. having the same FID) are fields in the
SMB header representing a process id (PID) and multiplex id (MID). The PID represents the process this request
is a part of. An MID represents different sub-processes within a process (or under a PID). Segments for each
”thread” are stored separately and written to the named pipewhen all segments are received. It is necessary to
track this so as not to munge these requests together (which would be a potential evasion opportunity).

Windows (all versions)

Uses a combination of PID and MID to define a ”thread”.

Samba (all versions)

Uses just the MID to define a ”thread”.

Multiple Bind Requests

A Bind request is the first request that must be made in a connection-oriented DCE/RPC session in order to
specify the interface/interfaces that one wants to communicate with.

Windows (all versions)

For all of the Windows versions, only oneBind can ever be made on a session whether or not it
succeeds or fails. Any binding after that must use theAlter Context request. If anotherBind is
made, all previous interface bindings are invalidated.

Samba 3.0.20 and earlier

Any amount ofBind requests can be made.

Samba later than 3.0.20

AnotherBind request can be made if the first failed and no interfaces were successfully bound to. If
a Bind after a successfulBind is made, all previous interface bindings are invalidated.

DCE/RPC Fragmented requests - Context ID

82

Each fragment in a fragmented request carries the context idof the bound interface it wants to make the request
to.

Windows (all versions)

The context id that is ultimately used for the request is contained in the first fragment. The context id
field in any other fragment can contain any value.

Samba (all versions)

The context id that is ultimately used for the request is contained in the last fragment. The context id
field in any other fragment can contain any value.

DCE/RPC Fragmented requests - Operation number

Each fragment in a fragmented request carries an operation number (opnum) which is more or less a handle to
a function offered by the interface.

Samba (all versions)

Windows 2000

Windows 2003

Windows XP

The opnum that is ultimately used for the request is contained in the last fragment. The opnum field
in any other fragment can contain any value.

Windows Vista

The opnum that is ultimately used for the request is contained in the first fragment. The opnum field
in any other fragment can contain any value.

DCE/RPC Stub data byte order

The byte order of the stub data is determined differently forWindows and Samba.

Windows (all versions)

The byte order of the stub data is that which was used in theBind request.

Samba (all versions)

The byte order of the stub data is that which is used in the request carrying the stub data.

Configuration

Thedcerpc2 preprocessor has a global configuration and one or more server configurations. The global preprocessor
configuration name isdcerpc2 and the server preprocessor configuration name isdcerpc2 server .

Global Configuration

preprocessor dcerpc2

The globaldcerpc2 configuration is required. Only one globaldcerpc2 configuration can be specified.

Option syntax

Option Argument Required Default

memcap <memcap> NO memcap 102400
disable defrag NONE NO OFF
max frag len <max-frag-len> NO OFF
events <events> NO OFF
reassemble threshold <re-thresh> NO OFF
disabled NONE NO OFF

83

memcap = 1024-4194303 (kilobytes)
max-frag-len = 1514-65535
events = pseudo-event | event | ’[’ event-list ’]’
pseudo-event = "none" | "all"
event-list = event | event ’,’ event-list
event = "memcap" | "smb" | "co" | "cl"
re-thresh = 0-65535

Option explanations

memcap

Specifies the maximum amount of run-time memory that can be allocated. Run-time memory includes any
memory allocated after configuration. Default is 100 MB.

disabled

Disables the preprocessor. By default this value is turned off. When the preprocessor is disabled only the
memcap option is applied when specified with the configuration.

disable defrag

Tells the preprocessor not to do DCE/RPC defragmentation. Default is to do defragmentation.

max frag len

Specifies the maximum fragment size that will be added to the defragmention module. If a fragment is
greater than this size, it is truncated before being added tothe defragmentation module. Default is set to
-1. The allowed range for this option is 1514 - 65535.

events

Specifies the classes of events to enable. (See Events section for an enumeration and explanation of events.)

memcap

Only one event. If the memcap is reached or exceeded, alert.

smb

Alert on events related to SMB processing.

co

Stands for connection-orientedDCE/RPC. Alert on events related to connection-orientedDCE/RPC
processing.

cl

Stands for connectionless DCE/RPC. Alert on events relatedto connectionless DCE/RPC pro-
cessing.

reassemble threshold

Specifies a minimum number of bytes in the DCE/RPC desegmentation and defragmentation buffers before
creating a reassembly packet to send to the detection engine. This option is useful in inline mode so as to
potentially catch an exploit early before full defragmentation is done. A value of 0 supplied as an argument
to this option will, in effect, disable this option. Defaultis disabled.

Option examples

memcap 30000
max_frag_len 16840
events none
events all
events smb
events co
events [co]
events [smb, co]
events [memcap, smb, co, cl]
reassemble_threshold 500

84

Configuration examples

preprocessor dcerpc2
preprocessor dcerpc2: memcap 500000
preprocessor dcerpc2: max_frag_len 16840, memcap 300000, events smb
preprocessor dcerpc2: memcap 50000, events [memcap, smb, c o, cl], max_frag_len 14440
preprocessor dcerpc2: disable_defrag, events [memcap, sm b]
preprocessor dcerpc2: reassemble_threshold 500

Default global configuration

preprocessor dcerpc2: memcap 102400

Server Configuration

preprocessor dcerpc2_server

The dcerpc2 server configuration is optional. Adcerpc2 server configuration must start withdefault or net
options. Thedefault andnet options are mutually exclusive. At most one default configuration can be specified. If
no default configuration is specified, default values will be used for the default configuration. Zero or morenet
configurations can be specified. For anydcerpc2 server configuration, if non-required options are not specified, the
defaults will be used. When processing DCE/RPC traffic, thedefault configuration is used if no net configurations
match. If anet configuration matches, it will override thedefault configuration. Anet configuration matches if the
packet’s server IP address matches an IP address or net specified in thenet configuration. Thenet option supports
IPv6 addresses. Note that port and ip variables defined insnort.conf CANNOT be used.

Option syntax

Option Argument Required Default
default NONE YES NONE
net <net> YES NONE
policy <policy> NO policy WinXP
detect <detect> NO detect [smb [139,445], tcp 135,

udp 135, rpc-over-http-server
593]

autodetect <detect> NO autodetect [tcp 1025:, udp 1025:,
rpc-over-http-server 1025:]

no autodetect http proxy ports NONE NO DISABLED (The preprocessor autodetects
on all proxy ports by default)

smb invalid shares <shares> NO NONE
smb max chain <max-chain> NO smb max chain 3

net = ip | ’[’ ip-list ’]’
ip-list = ip | ip ’,’ ip-list
ip = ip-addr | ip-addr ’/’ prefix | ip4-addr ’/’ netmask
ip-addr = ip4-addr | ip6-addr
ip4-addr = a valid IPv4 address
ip6-addr = a valid IPv6 address (can be compressed)
prefix = a valid CIDR
netmask = a valid netmask
policy = "Win2000" | "Win2003" | "WinXP" | "WinVista" |

"Samba" | "Samba-3.0.22" | "Samba-3.0.20"
detect = "none" | detect-opt | ’[’ detect-list ’]’
detect-list = detect-opt | detect-opt ’,’ detect-list
detect-opt = transport | transport port-item |

transport ’[’ port-list ’]’
transport = "smb" | "tcp" | "udp" | "rpc-over-http-proxy" |

"rpc-over-http-server"
port-list = port-item | port-item ’,’ port-list
port-item = port | port-range
port-range = ’:’ port | port ’:’ | port ’:’ port
port = 0-65535

85

shares = share | ’[’ share-list ’]’
share-list = share | share ’,’ share-list
share = word | ’"’ word ’"’ | ’"’ var-word ’"’
word = graphical ASCII characters except ’,’ ’"’ ’]’ ’[’ ’$’
var-word = graphical ASCII characters except ’,’ ’"’ ’]’ ’[’
max-chain = 0-255

Because the Snort main parser treats ’$’ as the start of a variable and tries to expand it, shares with ’$’ must be
enclosed quotes.

Option explanations

default

Specifies that this configuration is for the default server configuration.

net

Specifies that this configuration is an IP or net specific configuration. The configuration will only apply to
the IP addresses and nets supplied as an argument.

policy

Specifies the target-based policy to use when processing. Default is ”WinXP”.

detect

Specifies the DCE/RPC transport and server ports that shouldbe detected on for the transport. Defaults
are ports 139 and 445 for SMB, 135 for TCP and UDP, 593 for RPC over HTTP server and 80 for RPC
over HTTP proxy.

autodetect

Specifies the DCE/RPC transport and server ports that the preprocessor should attempt to autodetect on
for the transport. The autodetect ports are only queried if no detect transport/ports match the packet. The
order in which the preprocessor will attempt to autodetect will be - TCP/UDP, RPC over HTTP server,
RPC over HTTP proxy and lastly SMB. Note that most dynamic DCE/RPC ports are above 1024 and ride
directly over TCP or UDP. It would be very uncommon to see SMB on anything other than ports 139 and
445. Defaults are 1025-65535 for TCP, UDP and RPC over HTTP server.

no autodetect http proxy ports

By default, the preprocessor will always attempt to autodetect for ports specified in the detect configuration
for rpc-over-http-proxy. This is because the proxy is likely a web server and the preprocessor should not
look at all web traffic. This option is useful if the RPC over HTTP proxy configured with the detect option
is only used to proxy DCE/RPC traffic. Default is to autodetect on RPC over HTTP proxy detect ports.

smb invalid shares

Specifies SMB shares that the preprocessor should alert on ifan attempt is made to connect to them via a
Tree Connect or Tree Connect AndX . Default is empty.

smb max chain

Specifies the maximum amount of AndX command chaining that isallowed before an alert is generated.
Default maximum is 3 chained commands. A value of 0 disables this option. This value can be set from 0
to 255.

Option examples

86

net 192.168.0.10
net 192.168.0.0/24
net [192.168.0.0/24]
net 192.168.0.0/255.255.255.0
net feab:45b3:ab92:8ac4:d322:007f:e5aa:7845
net feab:45b3:ab92:8ac4:d322:007f:e5aa:7845/128
net feab:45b3::/32
net [192.168.0.10, feab:45b3::/32]
net [192.168.0.0/24, feab:45b3:ab92:8ac4:d322:007f:e5 aa:7845]
policy Win2000
policy Samba-3.0.22
detect none
detect smb
detect [smb]
detect smb 445
detect [smb 445]
detect smb [139,445]
detect [smb [139,445]]
detect [smb, tcp]
detect [smb 139, tcp [135,2103]]
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver [593,6002:6004]]
autodetect none
autodetect tcp
autodetect [tcp]
autodetect tcp 2025:
autodetect [tcp 2025:]
autodetect tcp [2025:3001,3003:]
autodetect [tcp [2025:3001,3003:]]
autodetect [tcp, udp]
autodetect [tcp 2025:, udp 2025:]
autodetect [tcp 2025:, udp, rpc-over-http-server [1025:6 001,6005:]]
smb_invalid_shares private
smb_invalid_shares "private"
smb_invalid_shares "C$"
smb_invalid_shares [private, "C$"]
smb_invalid_shares ["private", "C$"]
smb_max_chain 1

Configuration examples

preprocessor dcerpc2_server: \
default

preprocessor dcerpc2_server: \
default, policy Win2000

preprocessor dcerpc2_server: \
default, policy Win2000, detect [smb, tcp], autodetect tcp 1025:, \
smb_invalid_shares ["C$", "D$", "ADMIN$"]

preprocessor dcerpc2_server: net 10.4.10.0/24, policy Wi n2000

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, sm b_max_chain 1

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, \
detect [smb, tcp, rpc-over-http-proxy 8081],
autodetect [tcp, rpc-over-http-proxy [1025:6001,6005:]], \
smb_invalid_shares ["C$", "ADMIN$"], no_autodetect_htt p_proxy_ports

preprocessor dcerpc2_server: \
net [10.4.11.56,10.4.11.57], policy Samba, detect smb, au todetect none

Default server configuration

preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593], \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Completedcerpc2 default configuration

87

preprocessor dcerpc2: memcap 102400

preprocessor dcerpc2_server: \
default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593], \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Events

The preprocessor uses GID 133 to register events.

Memcap events

SID Description
1 If the memory cap is reached and the preprocessor is configured to alert.

SMB events

SID Description
2 An invalid NetBIOS Session Service type was specified in the header. Valid types are:Message ,

Request (only from client), Positive Response (only from server),Negative Response
(only from server),Retarget Response (only from server) andKeep Alive .

3 An SMB message type was specified in the header. Either a request was made by the server or a
response was given by the client.

4 The SMB id does not equal\xffSMB . Note that since the preprocessor does not yet support
SMB2, id of\xfeSMB is turned away before an eventable point is reached.

5 The word count of the command header is invalid. SMB commandshave pretty specific word
counts and if the preprocessor sees a command with a word count that doesn’t jive with that
command, the preprocessor will alert.

6 Some commands require a minimum number of bytes after the command header. If a command
requires this and the byte count is less than the minimum required byte count for that command,
the preprocessor will alert.

7 Some commands, especially the commands from the SMB Core implementation require a data
format field that specifies the kind of data that will be comingnext. Some commands require a
specific format for the data. The preprocessor will alert if the format is not that which is expected
for that command.

8 Many SMB commands have a field containing an offset from the beginning of the SMB header to
where the data the command is carrying starts. If this offsetputs us before data that has already
been processed or after the end of payload, the preprocessorwill alert.

9 Some SMB commands, such asTransaction , have a field containing the total amount of data
to be transmitted. If this field is zero, the preprocessor will alert.

10 The preprocessor will alert if the NetBIOS Session Service length field contains a value less than
the size of an SMB header.

11 The preprocessor will alert if the remaining NetBIOS packetlength is less than the size of the
SMB command header to be decoded.

12 The preprocessor will alert if the remaining NetBIOS packetlength is less than the size of the
SMB command byte count specified in the command header.

13 The preprocessor will alert if the remaining NetBIOS packetlength is less than the size of the
SMB command data size specified in the command header.

14 The preprocessor will alert if the total data count specifiedin the SMB command header is less
than the data size specified in the SMB command header. (Totaldata count must always be
greater than or equal to current data size.)

88

15 The preprocessor will alert if the total amount of data sent in a transaction is greater than the total
data count specified in the SMB command header.

16 The preprocessor will alert if the byte count specified in theSMB command header is less than
the data size specified in the SMB command. (The byte count must always be greater than or
equal to the data size.)

17 Some of the Core Protocol commands (from the initial SMB implementation) require that the
byte count be some value greater than the data size exactly. The preprocessor will alert if the
byte count minus a predetermined amount based on the SMB command is not equal to the data
size.

18 For theTree Connect command (and not theTree Connect AndX command), the preprocessor
has to queue the requests up and wait for a server response to determine whether or not an IPC
share was successfully connected to (which is what the preprocessor is interested in). Unlike
the Tree Connect AndX response, there is no indication in theTree Connect response as to
whether the share is IPC or not. There should be under normal circumstances no more than a few
pending tree connects at a time and the preprocessor will alert if this number is excessive.

19 After a client is done writing data using theWrite* commands, it issues aRead* command to
the server to tell it to send a response to the data it has written. In this case the preprocessor
is concerned with the server response. TheRead* request contains the file id associated with a
named pipe instance that the preprocessor will ultimately send the data to. The server response,
however, does not contain this file id, so it need to be queued with the request and dequeued with
the response. If multipleRead* requests are sent to the server, they are responded to in the order
they were sent. There should be under normal circumstances no more than a few pendingRead*
requests at a time and the preprocessor will alert if this number is excessive.

20 The preprocessor will alert if the number of chained commands in a single request is greater than
or equal to the configured amount (default is 3).

21 With AndX command chaining it is possible to chain multipleSession Setup AndX commands
within the same request. There is, however, only one place inthe SMB header to return a login
handle (or Uid). Windows does not allow this behavior, however Samba does. This is anomalous
behavior and the preprocessor will alert if it happens.

22 With AndX command chaining it is possible to chain multipleTree Connect AndX commands
within the same request. There is, however, only one place inthe SMB header to return a tree
handle (or Tid). Windows does not allow this behavior, however Samba does. This is anomalous
behavior and the preprocessor will alert if it happens.

23 When aSession Setup AndX request is sent to the server, the server responds (if the client
successfully authenticates) which a user id or login handle. This is used by the client in subse-
quent requests to indicate that it has authenticated. ALogoff AndX request is sent by the client
to indicate it wants to end the session and invalidate the login handle. With commands that are
chained after aSession Setup AndX request, the login handle returned by the server is used for
the subsequent chained commands. The combination of aSession Setup AndX command with
a chainedLogoff AndX command, essentially logins in and logs off in the same request and is
anomalous behavior. The preprocessor will alert if it sees this.

24 A Tree Connect AndX command is used to connect to a share. TheTree Disconnect com-
mand is used to disconnect from that share. The combination of a Tree Connect AndX com-
mand with a chainedTree Disconnect command, essentially connects to a share and discon-
nects from the same share in the same request and is anomalousbehavior. The preprocessor will
alert if it sees this.

25 An Open AndX or Nt Create AndX command is used to open/create a file or named pipe. (The
preprocessor is only interested in named pipes as this is where DCE/RPC requests are written to.)
TheClose command is used to close that file or named pipe. The combination of aOpen AndX
or Nt Create AndX command with a chainedClose command, essentially opens and closes the
named pipe in the same request and is anomalous behavior. Thepreprocessor will alert if it sees
this.

26 The preprocessor will alert if it sees any of the invalid SMB shares configured. It looks for a
Tree Connect or Tree Connect AndX to the share.

89

Connection-oriented DCE/RPC events

SID Description
27 The preprocessor will alert if the connection-oriented DCE/RPC major version contained in the

header is not equal to 5.
28 The preprocessor will alert if the connection-oriented DCE/RPC minor version contained in the

header is not equal to 0.
29 The preprocessor will alert if the connection-oriented DCE/RPC PDU type contained in the

header is not a valid PDU type.
30 The preprocessor will alert if the fragment length defined inthe header is less than the size of the

header.
31 The preprocessor will alert if the remaining fragment length is less than the remaining packet

size.
32 The preprocessor will alert if in aBind or Alter Context request, there are no context items

specified.
33 The preprocessor will alert if in aBind or Alter Context request, there are no transfer syntaxes

to go with the requested interface.
34 The preprocessor will alert if a non-last fragment is less than the size of the negotiated maximum

fragment length. Most evasion techniques try to fragment the data as much as possible and
usually each fragment comes well below the negotiated transmit size.

35 The preprocessor will alert if a fragment is larger than the maximum negotiated fragment length.
36 The byte order of the request data is determined by the Bind inconnection-oriented DCE/RPC

for Windows. It is anomalous behavior to attempt to change the byte order mid-session.
37 The call id for a set of fragments in a fragmented request should stay the same (it is incremented

for each complete request). The preprocessor will alert if it changes in a fragment mid-request.
38 The operation number specifies which function the request iscalling on the bound interface. If a

request is fragmented, this number should stay the same for all fragments. The preprocessor will
alert if the opnum changes in a fragment mid-request.

39 The context id is a handle to a interface that was bound to. If arequest if fragmented, this number
should stay the same for all fragments. The preprocessor will alert if the context id changes in a
fragment mid-request.

Connectionless DCE/RPC events

SID Description

40 The preprocessor will alert if the connectionless DCE/RPC major version is not equal to 4.
41 The preprocessor will alert if the connectionless DCE/RPC PDU type is not a valid PDU type.
42 The preprocessor will alert if the packet data length is lessthan the size of the connectionless

header.
43 The preprocessor will alert if the sequence number uses in a request is the same or less than a

previously used sequence number on the session. In testing,wrapping the sequence number space
produces strange behavior from the server, so this should beconsidered anomalous behavior.

Rule Options

New rule options are supported by enabling thedcerpc2 preprocessor:

dce_iface
dce_opnum

90

dce_stub_data

New modifiers to existingbyte test andbyte jump rule options:

byte_test:dce
byte_jump:dce

dce iface

For DCE/RPC based rules it has been necessary to set flow-bitsbased on a client bind to a service to avoid
false positives. It is necessary for a client to bind to a service before being able to make a call to it. When a
client sends a bind request to the server, it can, however, specify one or more service interfaces to bind to. Each
interface is represented by a UUID. Each interface UUID is paired with a unique index (or context id) that future
requests can use to reference the service that the client is making a call to. The server will respond with the
interface UUIDs it accepts as valid and will allow the clientto make requests to those services. When a client
makes a request, it will specify the context id so the server knows what service the client is making a request
to. Instead of using flow-bits, a rule can simply ask the preprocessor, using this rule option, whether or not the
client has bound to a specific interface UUID and whether or not this client request is making a request to it.
This can eliminate false positives where more than one service is bound to successfully since the preprocessor
can correlate the bind UUID to the context id used in the request. A DCE/RPC request can specify whether
numbers are represented as big endian or little endian. The representation of the interface UUID is different
depending on the endianness specified in the DCE/RPC previously requiring two rules - one for big endian and
one for little endian. The preprocessor eliminates the needfor two rules by normalizing the UUID. An interface
contains a version. Some versions of an interface may not be vulnerable to a certain exploit. Also, a DCE/RPC
request can be broken up into 1 or more fragments. Flags (and afield in the connectionless header) are set in the
DCE/RPC header to indicate whether the fragment is the first,a middle or the last fragment. Many checks for
data in the DCE/RPC request are only relevant if the DCE/RPC request is a first fragment (or full request), since
subsequent fragments will contain data deeper into the DCE/RPC request. A rule which is looking for data,
say 5 bytes into the request (maybe it’s a length field), will be looking at the wrong data on a fragment other
than the first, since the beginning of subsequent fragments are already offset some length from the beginning of
the request. This can be a source of false positives in fragmented DCE/RPC traffic. By default it is reasonable
to only evaluate if the request is a first fragment (or full request). However, if theany frag option is used to
specify evaluating on all fragments.

Syntax

dce_iface:<uuid>[, <operator><version>][, any_frag];

uuid = hexlong ’-’ hexshort ’-’ hexshort ’-’ 2hexbyte ’-’ 6he xbyte
hexlong = 4hexbyte
hexshort = 2hexbyte
hexbyte = 2HEXDIGIT
operator = ’<’ | ’>’ | ’=’ | ’!’
version = 0-65535

Examples

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188;
dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, <2;
dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, any_ frag;
dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, =1, a ny_frag;

This option is used to specify an interface UUID. Optional arguments are an interface version and operator to
specify that the version be less than (’<’), greater than (’>’), equal to (’=’) or not equal to (’!’) the version
specified. Also, by default the rule will only be evaluated for a first fragment (or full request, i.e. not a fragment)
since most rules are written to start at the beginning of a request. Theany frag argument says to evaluate for
middle and last fragments as well. This option requires tracking client Bind andAlter Context requests as
well as serverBind Ack andAlter Context responses for connection-oriented DCE/RPC in the preprocessor.
For eachBind andAlter Context request, the client specifies a list of interface UUIDs alongwith a handle

91

(or context id) for each interface UUID that will be used during the DCE/RPC session to reference the interface.
The server response indicates which interfaces it will allow the client to make requests to - it either accepts
or rejects the client’s wish to bind to a certain interface. This tracking is required so that when a request is
processed, the context id used in the request can be correlated with the interface UUID it is a handle for.

hexlong andhexshort will be specified and interpreted to be in big endian order (this is usually the default
way an interface UUID will be seen and represented). As an example, the following Messenger interface UUID
as taken off the wire from a little endianBind request:

|f8 91 7b 5a 00 ff d0 11 a9 b2 00 c0 4f b6 e6 fc|

must be written as:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

The same UUID taken off the wire from a big endianBind request:

|5a 7b 91 f8 ff 00 11 d0 a9 b2 00 c0 4f b6 e6 fc|

must be written the same way:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

This option matches if the specified interface UUID matches the interface UUID (as referred to by the context
id) of the DCE/RPC request and if supplied, the version operation is true. This option will not match if the
fragment is not a first fragment (or full request) unless theany frag option is supplied in which case only the
interface UUID and version need match. Note that a defragmented DCE/RPC request will be considered a full
request.

△! NOTE
Using this rule option will automatically insert fast pattern contents into the fast pattern matcher. For UDP
rules, the interface UUID, in both big and little endian format will be inserted into the fast pattern matcher.
For TCP rules, (1) if the rule optionflow:to server|from client is used,|05 00 00| will be inserted into
the fast pattern matcher, (2) if the rule optionflow:from server|to client is used,|05 00 02| will be
inserted into the fast pattern matcher and (3) if the flow isn’t known, |05 00| will be inserted into the fast
pattern matcher. Note that if the rule already has content rule options in it, the best (meaning longest) pattern
will be used. If a content in the rule uses thefast pattern rule option, it will unequivocally be used over
the above mentioned patterns.

dce opnum

The opnum represents a specific function call to an interface. After is has been determined that a client has
bound to a specific interface and is making a request to it (seeabove -dce iface) usually we want to know
what function call it is making to that service. It is likely that an exploit lies in the particular DCE/RPC function
call.

Syntax

dce_opnum:<opnum-list>;

opnum-list = opnum-item | opnum-item ’,’ opnum-list
opnum-item = opnum | opnum-range
opnum-range = opnum ’-’ opnum
opnum = 0-65535

Examples

92

dce_opnum:15;
dce_opnum:15-18;
dce_opnum:15, 18-20;
dce_opnum:15, 17, 20-22;

This option is used to specify an opnum (or operation number), opnum range or list containing either or both
opnum and/or opnum-range. The opnum of a DCE/RPC request will be matched against the opnums specified
with this option. This option matches if any one of the opnumsspecified match the opnum of the DCE/RPC
request.

dce stub data

Since most netbios rules were doing protocol decoding only to get to the DCE/RPC stub data, i.e. the remote
procedure call or function call data, this option will alleviate this need and place the cursor at the beginning of
the DCE/RPC stub data. This reduces the number of rule optionchecks and the complexity of the rule.

This option takes no arguments.

Example

dce_stub_data;

This option is used to place the cursor (used to walk the packet payload in rules processing) at the beginning
of the DCE/RPC stub data, regardless of preceding rule options. There are no arguments to this option. This
option matches if there is DCE/RPC stub data.

byte test andbyte jump with dce

A DCE/RPC request can specify whether numbers are represented in big or little endian. These rule options will
take as a new argumentdce and will work basically the same as the normalbyte test /byte jump , but since
the DCE/RPC preprocessor will know the endianness of the request, it will be able to do the correct conversion.

byte test

Syntax

byte_test:<convert>, [!]<operator>, <value>, <offset> [, relative], dce;

convert = 1 | 2 | 4 (only with option "dce")
operator = ’<’ | ’=’ | ’>’ | ’&’ | ’ˆ’
value = 0 - 4294967295
offset = -65535 to 65535

Examples

byte_test:4, >, 35000, 0, relative, dce;
byte_test:2, !=, 2280, -10, relative, dce;

When using thedce argument to abyte test , the following normalbyte test arguments will not be
allowed:big , little , string , hex , dec andoct .

byte jump

Syntax

byte_jump:<convert>, <offset>[, relative][, multiplier <mult_value>] \
[, align][, post_offet <adjustment_value>], dce;

convert = 1 | 2 | 4 (only with option "dce")
offset = -65535 to 65535
mult_value = 0 - 65535
adjustment_value = -65535 to 65535

Example

byte_jump:4,-4,relative,align,multiplier 2,post_offs et -4,dce;

When using thedce argument to abyte jump , the following normalbyte jump arguments will not be
allowed:big , little , string , hex , dec , oct andfrom beginning .

93

Example of rule complexity reduction

The following two rules using the new rule options replace 64(set and isset flowbit) rules that are necessary if
the new rule options are not used:

alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593 ,1024:] \
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ ished,to_server; \
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_ opnum:0-11; dce_stub_data; \
pcre:"/ˆ.{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump :4,-4,relative,align,dce; \
byte_test:4,>,256,4,relative,dce; reference:bugtraq, 23470; reference:cve,2007-1748; \
classtype:attempted-admin; sid:1000068;)

alert udp $EXTERNAL_NET any -> $HOME_NET [135,1024:] \
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ ished,to_server; \
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_ opnum:0-11; dce_stub_data; \
pcre:"/ˆ.{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump :4,-4,relative,align,dce; \
byte_test:4,>,256,4,relative,dce; reference:bugtraq, 23470; reference:cve,2007-1748; \
classtype:attempted-admin; sid:1000069;)

2.2.14 Sensitive Data Preprocessor

The Sensitive Data preprocessor is a Snort module that performs detection and filtering of Personally Identifiable
Information (PII). This information includes credit card numbers, U.S. Social Security numbers, and email addresses.
A limited regular expression syntax is also included for defining your own PII.

Dependencies

The Stream5 preprocessor must be enabled for the Sensitive Data preprocessor to work.

Preprocessor Configuration

Sensitive Data configuration is split into two parts: the preprocessor config, and the rule options. The preprocessor
config starts with:

preprocessor sensitive_data:

Option syntax

Option Argument Required Default

alert threshold <number> NO alert threshold 25
mask output NONE NO OFF
ssn file <filename> NO OFF

alert_threshold = 1 - 65535

Option explanations

alert threshold

The preprocessor will alert when any combination of PII are detected in a session. This option specifies
how many need to be detected before alerting. This should be set higher than the highest individual count
in your ”sd pattern” rules.

mask output

This option replaces all but the last 4 digits of a detected PII with ”X”s. This is only done on credit card &
Social Security numbers, where an organization’s regulations may prevent them from seeing unencrypted
numbers.

94

ssn file

A Social Security number is broken up into 3 sections: Area (3digits), Group (2 digits), and Serial (4
digits). On a monthly basis, the Social Security Administration publishes a list of which Group numbers
are in use for each Area. These numbers can be updated in Snortby supplying a CSV file with the new
maximum Group numbers to use. By default, Snort recognizes Social Security numbers issued up through
November 2009.

Example preprocessor config

preprocessor sensitive_data: alert_threshold 25 \
mask_output \
ssn_file ssn_groups_Jan10.csv

Rule Options

Snort rules are used to specify which PII the preprocessor should look for. A new rule option is provided by the
preprocessor:

sd_pattern

This rule option specifies what type of PII a rule should detect.

Syntax

sd_pattern:<count>, <pattern>;

count = 1 - 255
pattern = any string

Option Explanations

count

This dictates how many times a PII pattern must be matched foran alert to be generated. The count is
tracked across all packets in a session.

pattern

This is where the pattern of the PII gets specified. There are afew built-in patterns to choose from:

credit card

The ”creditcard” pattern matches 15- and 16-digit credit card numbers.These numbers may
have spaces, dashes, or nothing in between groups. This covers Visa, Mastercard, Discover, and
American Express. Credit card numbers matched this way havetheir check digits verified using
the Luhn algorithm.

us social

This pattern matches against 9-digit U.S. Social Security numbers. The SSNs are expected to
have dashes between the Area, Group, and Serial sections.
SSNs have no check digits, but the preprocessor will check matches against the list of currently
allocated group numbers.

us social nodashes

This pattern matches U.S. Social Security numbers without dashes separating the Area, Group,
and Serial sections.

email

95

This pattern matches against email addresses.

If the pattern specified is not one of the above built-in patterns, then it is the definition of a custom PII
pattern. Custom PII types are defined using a limited regex-style syntax. The following special characters
and escape sequences are supported:

\d matches any digit
\D matches any non-digit
\l matches any letter
\L matches any non-letter
\w matches any alphanumeric character
\W matches any non-alphanumeric character

{num} used to repeat a character or escape sequence ”num” times. example:
”{.3}” matches 3 digits.

? makes the previous character or escape sequence optional. example: ”
?” matches an optional space. This behaves in a greedy manner.

\\ matches a backslash
\{, \} matches{ and}
\? matches a question mark.

Other characters in the pattern will be matched literally.

△! NOTE
Unlike PCRE,\w in this rule option does NOT match underscores.

Examples

sd_pattern: 2,us_social;

Alerts when 2 social security numbers (with dashes) appear in a session.

sd_pattern: 5,(\d{3})\d{3}-\d{4};

Alerts on 5 U.S. phone numbers, following the format (123)456-7890

Whole rule example:

alert tcp $HOME_NET $HIGH_PORTS -> $EXTERNAL_NET $SMTP_PORTS \
(msg:"Credit Card numbers sent over email"; gid:138; sid:1 000; rev:1; \
sd_pattern:4,credit_card; metadata:service smtp;)

Caveats

sd pattern is not compatible with other rule options. Trying to use other rule options withsd pattern
will result in an error message.
Rules usingsd pattern must use GID 138.

2.2.15 Normalizer

When operating Snort in inline mode, it is helpful to normalize packets to help minimize the chances of evasion.

To enable the normalizer, use the following when configuringSnort:

./configure --enable-normalizer

The normalize preprocessor is activated via the conf as outlined below. There are also many new preprocessor and
decoder rules to alert on or drop packets with ”abnormal” encodings.

Note that in the following, fields are cleared only if they arenon-zero. Also, normalizations will only be enabled if
the selected DAQ supports packet replacement and is operating in inline mode.

If a policy is configured forinline test or passive mode, any normalization statements in the policyconfig are
ignored.

96

IP4 Normalizations

IP4 normalizations are enabled with:

preprocessor normalize_ip4: [df], [rf]

Base normalizations enabled with ”preprocessornormalize ip4 ” include:

• Truncate packets with excess payload to the datagram lengthspecified in the IP header.

• TTL normalization if enabled (explained below).

• Clear the differentiated services field (formerly TOS).

• NOP all options octets.

Optional normalizations include:

• df don’t fragment: clear this bit on incoming packets.

• rf reserved flag: clear this bit on incoming packets.

IP6 Normalizations

IP6 normalizations are enabled with:

preprocessor normalize_ip6

Base normalizations enabled with ”preprocessornormalize ip6 ” include:

• Hop limit normalizaton if enabled (explained below).

• NOP all options octets in hop-by-hop and destination options extension headers.

ICMP4/6 Normalizations

ICMP4 and ICMP6 normalizations are enabled with:

preprocessor normalize_icmp4
preprocessor normalize_icmp6

Base normalizations enabled with the above include:

• Clear the code field in echo requests and replies.

TCP Normalizations

TCP normalizations are enabled with:

97

preprocessor normalize_tcp: \
[ips] [urp] \
[ecn <ecn_type>], \
[opts [allow <allowed_opt>+]]

<ecn_type> ::= stream | packet

<allowed_opt> ::= \
sack | echo | partial_order | conn_count | alt_checksum | md5 | <num>

<sack> ::= { 4, 5 }
<echo> ::= { 6, 7 }
<partial_order> ::= { 9, 10 }
<conn_count> ::= { 11, 12, 13 }
<alt_checksum> ::= { 14, 15 }
<md5> ::= { 19 }
<num> ::= (3..255)

Base normalizations enabled with ”preprocessornormalize tcp ” include:

• Remove data on SYN.

• Clear the reserved bits in the TCP header.

• Clear the urgent pointer if the urgent flag is not set.

• Clear the urgent pointer and the urgent flag if there is no payload.

• Set the urgent pointer to the payload length if it is greater than the payload length.

• Clear the urgent flag if the urgent pointer is not set.

• Clear any option padding bytes.

• Remove any data from RST packet.

• Trim data to window.

• Trim data to MSS.

Optional normalizations include:

• ips

ensure consistency in retransmitted data (also forces reassembly policy to ”first”). Any segments that can’t be
properly reassembled will be dropped.

• urp

urgent pointer: don’t adjust the urgent pointer if it is greater than payload length.

• ecn packet

clear ECN flags on a per packet basis (regardless of negotiation).

• ecn stream

clear ECN flags if usage wasn’t negotiated. Should also enable require 3whs.

• opts

NOP all option bytes other than maximum segment size, windowscaling, timestamp, and any explicitly allowed
with the allow keyword. You can allow options to pass by name or number.

98

• opts

if timestamp is present but invalid, or valid but not negotiated, NOP the timestamp octets.

• opts

if timestamp was negotiated but not present, block the packet.

• opts

clear TS ECR if ACK flag is not set.

• opts

MSS and window scale options are NOP’d if SYN flag is not set.

• opts

trim payload length to MSS if longer.

TTL Normalization

TTL normalization pertains to both IP4 TTL (time-to-live) and IP6 (hop limit) and is only performed if both the
relevant base normalization is enabled (as described above) and the minimum and new TTL values are configured, as
follows:

config min_ttl: <min_ttl>
config new_ttl: <new_ttl>

<min_ttl> ::= (1..255)
<new_ttl> ::= (<min_ttl>+1..255)

If new ttl ¿min ttl , then if a packet is received with a TTL ¡min ttl , the TTL will be set tonew ttl .

Note that this configuration item was deprecated in 2.8.6:

preprocessor stream5_tcp: min_ttl <#>

By defaultmin ttl = 1 (TTL normalization is disabled). When TTL normalizationis turned on thenew ttl is set to
5 by default.

2.3 Decoder and Preprocessor Rules

Decoder and preprocessor rules allow one to enable and disable decoder and preprocessor events on a rule by rule
basis. They also allow one to specify the rule type or action of a decoder or preprocessor event on a rule by rule basis.

Decoder config options will still determine whether or not togenerate decoder events. For example, ifconfig
disable decode alerts is in snort.conf , decoder events will not be generated regardless of whetheror not there
are corresponding rules for the event. Also note that if the decoder is configured to enable drops, e.g.config
enable decode drops , these options will take precedence over the event type of the rule. A packet will be dropped
if either a decoder config drop option is insnort.conf or the decoder or preprocessor rule type isdrop . Of course,
the drop cases only apply if Snort is running inline. Seedoc/README.decode for config options that control decoder
events.

99

2.3.1 Configuring

The following options to configure will enable decoder and preprocessor rules:

$./configure --enable-decoder-preprocessor-rules

The decoder and preprocessor rules are located in thepreproc rules/ directory in the top level source tree, and
have the namesdecoder.rules andpreprocessor.rules respectively. These files are updated as new decoder and
preprocessor events are added to Snort. Thegen-msg.map underetc directory is also updated with new decoder and
preprocessor rules.

To enable these rules insnort.conf , define the path to where the rules are located and uncomment the include lines
in snort.conf that reference the rules files.

var PREPROC_RULE_PATH /path/to/preproc_rules
...
include $PREPROC_RULE_PATH/preprocessor.rules
include $PREPROC_RULE_PATH/decoder.rules

To disable any rule, just comment it with a# or remove the rule completely from the file (commenting is recom-
mended).

To change the rule type or action of a decoder/preprocessor rule, just replacealert with the desired rule type. Any
one of the following rule types can be used:

alert
log
pass
drop
sdrop
reject

For example one can change:

alert (msg: "DECODE_NOT_IPV4_DGRAM"; sid: 1; gid: 116; rev : 1; \
metadata: rule-type decode ; classtype:protocol-command -decode;)

to

drop (msg: "DECODE_NOT_IPV4_DGRAM"; sid: 1; gid: 116; rev: 1; \
metadata: rule-type decode ; classtype:protocol-command -decode;)

to drop (as well as alert on) packets where the Ethernet protocol is IPv4 but version field in IPv4 header has a value
other than 4.

SeeREADME.decode, README.gre and the various preprocessor READMEs for descriptions of the rules indecoder.rules
andpreprocessor.rules .

The generator ids (gid) for different preprocessors and thedecoder are as follows:

2.3.2 Reverting to original behavior

If you have configured snort to use decoder and preprocessor rules, the following config option insnort.conf will
make Snort revert to the old behavior:

config autogenerate_preprocessor_decoder_rules

100

Generator Id Module
105 Back Orifice preprocessor
106 RPC Decode preprocessor
112 Arpspoof preprocessor
116 Snort Decoder
119 HTTP Inspect preprocessor (Client)
120 HTTP Inspect preprocessor (Server)
122 Portscan preprocessor
123 Frag3 preprocessor
124 SMTP preprocessor
125 FTP (FTP) preprocessor
126 FTP (Telnet) preprocessor
127 ISAKMP preprocessor
128 SSH preprocessor
129 Stream5 preprocessor
131 DNS preprocessor
132 Skype preprocessor
133 DceRpc2 preprocessor
134 PPM preprocessor
137 SSL preprocessor
139 SDF preprocessor

Note that if you want to revert to the old behavior, you also have to remove the decoder and preprocessor rules and
any reference to them fromsnort.conf , otherwise they will be loaded. This option applies to rulesnot specified and
the default behavior is to alert.

2.4 Event Processing

Snort provides a variety of mechanisms to tune event processing to suit your needs:

• Detection Filters

You can use detection filters to specify a threshold that mustbe exceeded before a rule generates an event. This
is covered in section 3.7.10.

• Rate Filters

You can use rate filters to change a rule action when the numberor rate of events indicates a possible attack.

• Event Filters

You can use event filters to reduce the number of logged eventsfor noisy rules. This can be tuned to significantly
reduce false alarms.

• Event Suppression

You can completely suppress the logging of unintersting events.

2.4.1 Rate Filtering

rate filter provides rate based attack prevention by allowing users to configure a new action to take for a specified
time when a given rate is exceeded. Multiple rate filters can be defined on the same rule, in which case they are
evaluated in the order they appear in the configuration file, and the first applicable action is taken.

101

Format

Rate filters are used as standalone configurations (outside of a rule) and have the following format:

rate_filter \
gen_id <gid>, sig_id <sid>, \
track <by_src|by_dst|by_rule>, \
count <c>, seconds <s>, \
new_action alert|drop|pass|log|sdrop|reject, \
timeout <seconds> \
[, apply_to <ip-list>]

The options are described in the table below - all are required exceptapply to , which is optional.

Option Description
track by src | by dst |
by rule

rate is tracked either by source IP address, destination IP address, or by
rule. This means the match statistics are maintained for each unique
source IP address, for each unique destination IP address, or they are
aggregated at rule level. For rules related to Stream5 sessions, source
and destination means client and server respectively.track by rule
andapply to may not be used together.

count c the maximum number of rule matches ins seconds before the rate filter
limit to is exceeded.c must be nonzero value.

seconds s the time period over whichcount is accrued. 0 seconds meanscount is
a total count instead of a specific rate. For example,rate filter may
be used to detect if the number of connections to a specific server exceed
a specific count. 0 seconds only applies to internal rules (gen id 135) and
other use will produce a fatal error by Snort.

new action alert | drop |
pass | log | sdrop | reject

new action replaces rule action fort seconds. drop , reject , and
sdrop can be used only when snort is used in inline mode.sdrop and
reject are conditionally compiled with GIDS.

timeout t revert to the original rule action aftert seconds. Ift is 0, then rule
action is never reverted back. Anevent filter may be used to manage
number of alerts after the rule action is enabled byrate filter .

apply to <ip-list> restrict the configuration to only to source or destination IP address (in-
dicated by track parameter) determined by<ip-list> . track by rule
and apply to may not be used together. Note that events are gener-
ated during the timeout period, even if the rate falls below the configured
limit.

Examples

Example 1 - allow a maximum of 100 connection attempts per second from any one IP address, and block further
connection attempts from that IP address for 10 seconds:

rate_filter \
gen_id 135, sig_id 1, \
track by_src, \
count 100, seconds 1, \
new_action drop, timeout 10

Example 2 - allow a maximum of 100 successful simultaneous connections from any one IP address, and block further
connections from that IP address for 10 seconds:

102

rate_filter \
gen_id 135, sig_id 2, \
track by_src, \
count 100, seconds 0, \
new_action drop, timeout 10

2.4.2 Event Filtering

Event filtering can be used to reduce the number of logged alerts for noisy rules by limiting the number of times a
particular event is logged during a specified time interval.This can be tuned to significantly reduce false alarms.

There are 3 types of event filters:

• limit

Alerts on the 1stm events during the time interval, then ignores events for therest of the time interval.

• threshold

Alerts everym times we see this event during the time interval.

• both

Alerts once per time interval after seeingm occurrences of the event, then ignores any additional events during
the time interval.

Format

event_filter \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <c>, seconds <s>

threshold \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <c>, seconds <s>

threshold is an alias forevent filter . Both formats are equivalent and support the options described below - all
are required.threshold is deprecated and will not be supported in future releases.

△! NOTE
Only oneevent filter may be defined for a givengen id, sig id . If more than oneevent filter is
applied to a specificgen id, sig id pair, Snort will terminate with an error while reading the configuration
information.

event filter s with sig id 0 are considered ”global” because they apply to all rules with the givengen id . If
gen id is also 0, then the filter applies to all rules. (gen id 0, sig id != 0 is not allowed). Standard filtering tests
are applied first, if they do not block an event from being logged, the global filtering test is applied. Thresholds in a
rule (deprecated) will override a globalevent filter . Globalevent filter s do not override what’s in a signature
or a more specific stand-aloneevent filter .

△! NOTE
event filters can be used to suppress excessiverate filter alerts, however, the firstnew action event
of the timeout period is never suppressed. Such events indicate a change of state that are significant to the
user monitoring the network.

103

Option Description
gen id <gid> Specify the generator ID of an associated rule.gen id 0, sig id 0 can be used

to specify a ”global” threshold that applies to all rules.
sig id <sid> Specify the signature ID of an associated rule.sig id 0 specifies a ”global” filter

because it applies to allsig id s for the givengen id .
type limit|threshold|both type limit alerts on the 1st m events during the time interval, then ignores events

for the rest of the time interval. Typethreshold alerts every m times we see
this event during the time interval. Typeboth alerts once per time interval after
seeing m occurrences of the event, then ignores any additional events during the
time interval.

track by src|by dst rate is tracked either by source IP address, or destination IP address. This means
count is maintained for each unique source IP addresses, or for each unique desti-
nation IP addresses. Ports or anything else are not tracked.

count c number of rule matching in s seconds that will causeevent filter limit to be
exceeded.c must be nonzero value.

seconds s time period over whichcount is accrued.s must be nonzero value.

Examples

Limit logging to 1 event per 60 seconds:

event_filter \
gen_id 1, sig_id 1851, \
type limit, track by_src, \
count 1, seconds 60

Limit logging to every 3rd event:

event_filter \
gen_id 1, sig_id 1852, \
type threshold, track by_src, \
count 3, seconds 60

Limit logging to just 1 event per 60 seconds, but only if we exceed 30 events in 60 seconds:

event_filter \
gen_id 1, sig_id 1853, \
type both, track by_src, \
count 30, seconds 60

Limit to logging 1 event per 60 seconds per IP triggering eachrule (rule genid is 1):

event_filter \
gen_id 1, sig_id 0, \
type limit, track by_src, \
count 1, seconds 60

Limit to logging 1 event per 60 seconds per IP, triggering each rule for each event generator:

event_filter \
gen_id 0, sig_id 0, \
type limit, track by_src, \
count 1, seconds 60

104

Events in Snort are generated in the usual way, event filters are handled as part of the output system. Read gen-
msg.map for details on gen ids.

Users can also configure a memcap for threshold with a “config:” option:

config event_filter: memcap <bytes>

this is deprecated:
config threshold: memcap <bytes>

2.4.3 Event Suppression

Event suppression stops specified events from firing withoutremoving the rule from the rule base. Suppression uses
an IP list to select specific networks and users for suppression. Suppression tests are performed prior to either standard
or global thresholding tests.

Suppression are standalone configurations that reference generators, SIDs, and IP addresses via an IP list . This allows
a rule to be completely suppressed, or suppressed when the causative traffic is going to or coming from a specific IP
or group of IP addresses.

You may apply multiple suppressions to a non-zero SID. You may also combine oneevent filter and several
suppressions to the same non-zero SID.

Format

The suppress configuration has two forms:

suppress \
gen_id <gid>, sig_id <sid>, \

suppress \
gen_id <gid>, sig_id <sid>, \
track <by_src|by_dst>, ip <ip-list>

Option Description
gen id <gid> Specify the generator ID of an associated rule.gen id 0, sig id 0 can be used

to specify a ”global” threshold that applies to all rules.
sig id <sid> Specify the signature ID of an associated rule.sig id 0 specifies a ”global” filter

because it applies to allsig id s for the givengen id .
track by src|by dst Suppress by source IP address or destination IP address. This is optional, but if

present,ip must be provided as well.
ip <list> Restrict the suppression to only source or destination IP addresses (indicated by

track parameter) determined by ¡list¿. If track is provided, ip must be provided
as well.

Examples

Suppress this event completely:

suppress gen_id 1, sig_id 1852:

Suppress this event from this IP:

105

suppress gen_id 1, sig_id 1852, track by_src, ip 10.1.1.54

Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.0/2 4

2.4.4 Event Logging

Snort supports logging multiple events per packet/stream that are prioritized with different insertion methods, suchas
max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:

config event_queue: [max_queue [size]] [log [size]] [orde r_events [TYPE]]

Event Queue Configuration Options There are three configuration options to the configuration parameter ’eventqueue’.

1. max queue

This determines the maximum size of the event queue. For example, if the event queue has a max size of 8, only
8 events will be stored for a single packet or stream.

The default value is 8.

2. log

This determines the number of events to log for a given packetor stream. You can’t log more than the maxevent
number that was specified.

The default value is 3.

3. order events

This argument determines the way that the incoming events are ordered. We currently have two different meth-
ods:

• priority - The highest priority (1 being the highest) events are ordered first.

• content length - Rules are ordered before decode or preprocessor alerts, and rules that have a longer
content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rule types such as pass, alert, log, etc.

The default value is contentlength.

Event Queue Configuration Examples The default configuration:

config event_queue: max_queue 8 log 3 order_events content _length

Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events conten t_length

Use the default event queue values, but change event order:

config event_queue: order_events priority

Use the default event queue values but change the number of logged events:

config event_queue: log 2

106

2.5 Performance Profiling

Snort can provide statistics on rule and preprocessor performance. Each require only a simpleconfig option to
snort.conf and Snort will print statistics on the worst (or all) performers on exit. When a file name is provided in
profile rules or profile preprocs , the statistics will be saved in these files. Ifappend is not specified, a new
file will be created each time Snort is run. The filenames will have timestamps appended to them. These files will be
found in the logging directory.

To use this feature, you must build snort with the--enable-perfprofiling option to the configure script.

2.5.1 Rule Profiling

Format

config profile_rules: \
print [all | <num>], \
sort <sort_option> \
[,filename <filename> [append]]

• <num> is the number of rules to print

• <sort option> is one of:

checks

matches

nomatches

avg ticks

avg ticks per match

avg ticks per nomatch

total ticks

• <filename> is the output filename

• [append] dictates that the output will go to the same file each time (optional)

Examples

• Print all rules, sort by avgticks (default configuration if option is turned on)

config profile rules

• Print all rules, sort by avgticks, and append to filerules stats.txt

config profile rules: filename rules stats.txt append

• Print the top 10 rules, based on highest average time

config profile rules: print 10, sort avg ticks

• Print all rules, sorted by number of checks

config profile rules: print all, sort checks

• Print top 100 rules, based on total time

config profile rules: print 100, sort total ticks

• Print with default options, save results to performance.txt each time

config profile rules: filename performance.txt append

• Print top 20 rules, save results to perf.txt with timestamp in filename

config profile rules: print 20, filename perf.txt

107

Rule Profile Statistics (worst 4 rules)
=== =======

Num SID GID Rev Checks Matches Alerts Ticks Avg/Check Avg/Ma tch Avg/Nonmatch
=== === === === ====== ======= ====== ===== ========= ====== === ============

1 2389 1 12 1 1 1 385698 385698.0 385698.0 0.0
2 2178 1 17 2 0 0 107822 53911.0 0.0 53911.0
3 2179 1 8 2 0 0 92458 46229.0 0.0 46229.0
4 1734 1 37 2 0 0 90054 45027.0 0.0 45027.0

Figure 2.1: Rule Profiling Example Output

Output

Snort will print a table much like the following at exit.

Configuration line used to print the above table:

config profile rules: print 4, sort total ticks

The columns represent:

• Number (rank)

• Sig ID

• Generator ID

• Checks (number of times rule was evaluated after fast pattern match within portgroup or any->any rules)

• Matches (number of times ALL rule options matched, will be high for rules that have no options)

• Alerts (number of alerts generated from this rule)

• CPU Ticks

• Avg Ticks per Check

• Avg Ticks per Match

• Avg Ticks per Nonmatch

Interpreting this info is the key. The Microsecs (or Ticks) column is important because that is the total time spent
evaluating a given rule. But, if that rule is causing alerts,it makes sense to leave it alone.

A high Avg/Check is a poor performing rule, that most likely contains PCRE. High Checks and low Avg/Check is
usually an any->any rule with few rule options and no content. Quick to check,the few options may or may not match.
We are looking at moving some of these into code, especially those with low SIDs.

By default, this information will be printed to the console when Snort exits. You can use the ”filename” option in
snort.conf to specify a file where this will be written. If ”append” is not specified, a new file will be created each time
Snort is run. The filenames will have timestamps appended to them. These files will be found in the logging directory.

2.5.2 Preprocessor Profiling

Format

config profile_preprocs: \
print [all | <num>], \
sort <sort_option> \
[, filename <filename> [append]]

• <num> is the number of preprocessors to print

108

• <sort option> is one of:

checks

avg ticks

total ticks

• <filename> is the output filename

• [append] dictates that the output will go to the same file each time (optional)

Examples

• Print all preprocessors, sort by avgticks (default configuration if option is turned on)

config profile preprocs

• Print all preprocessors, sort by avgticks, and append to filepreprocs stats.txt

config profile preprocs: filename preprocs stats.txt append

• Print the top 10 preprocessors, based on highest average time

config profile preprocs: print 10, sort avg ticks

• Print all preprocessors, sorted by number of checks

config profile preprocs: print all, sort checks

Output

Snort will print a table much like the following at exit.

Configuration line used to print the above table:

config profile_rules: \
print 3, sort total_ticks

The columns represent:

• Number (rank) - The number is indented for each layer. Layer 1preprocessors are listed under their respective
caller (and sorted similarly).

• Preprocessor Name

• Layer - When printing a specific number of preprocessors all subtasks info for a particular preprocessor is
printed for each layer 0 preprocessor stat.

• Checks (number of times preprocessor decided to look at a packet, ports matched, app layer header was correct,
etc)

• Exits (number of corresponding exits – just to verify code isinstrumented correctly, should ALWAYS match
Checks, unless an exception was trapped)

• CPU Ticks

• Avg Ticks per Check

• Percent of caller - For non layer 0 preprocessors, i.e. subroutines within preprocessors, this identifies the percent
of the caller’s ticks that is spent for this subtask.

Because of task swapping, non-instrumented code, and otherfactors, the Pct of Caller field will not add up to 100%
of the caller’s time. It does give a reasonable indication ofhow much relative time is spent within each subtask.

By default, this information will be printed to the console when Snort exits. You can use the ”filename” option in
snort.conf to specify a file where this will be written. If ”append” is not specified, a new file will be created each time
Snort is run. The filenames will have timestamps appended to them. These files will be found in the logging directory.

109

Preprocessor Profile Statistics (all)
=== =======

Num Preprocessor Layer Checks Exits Microsecs Avg/Check Pc t of Caller Pct of Total
=== ============ ===== ====== ===== ========= ========= == =========== ============

1 ftptelnet_ftp 0 2697 2697 135720 50.32 0.20 0.20
2 detect 0 930237 930237 31645670 34.02 47.20 47.20

1 rule eval 1 1347969 1347969 26758596 19.85 84.56 39.91
1 rule tree eval 2 1669390 1669390 26605086 15.94 99.43 39.68

1 pcre 3 488652 488652 18994719 38.87 71.40 28.33
2 asn1 3 1 1 8 8.56 0.00 0.00
3 uricontent 3 647122 647122 2638614 4.08 9.92 3.94
4 content 3 1043099 1043099 3154396 3.02 11.86 4.70
5 ftpbounce 3 23 23 19 0.87 0.00 0.00
6 byte_jump 3 9007 9007 3321 0.37 0.01 0.00
7 byte_test 3 239015 239015 64401 0.27 0.24 0.10
8 icmp_seq 3 2 2 0 0.16 0.00 0.00
9 fragbits 3 65259 65259 10168 0.16 0.04 0.02

10 isdataat 3 5085 5085 757 0.15 0.00 0.00
11 flags 3 4147 4147 517 0.12 0.00 0.00
12 flowbits 3 2002630 2002630 212231 0.11 0.80 0.32
13 ack 3 4042 4042 261 0.06 0.00 0.00
14 flow 3 1347822 1347822 79002 0.06 0.30 0.12
15 icode 3 75538 75538 4280 0.06 0.02 0.01
16 itype 3 27009 27009 1524 0.06 0.01 0.00
17 icmp_id 3 41150 41150 1618 0.04 0.01 0.00
18 ip_proto 3 142625 142625 5004 0.04 0.02 0.01
19 ipopts 3 13690 13690 457 0.03 0.00 0.00
2 rtn eval 2 55836 55836 22763 0.41 0.09 0.03

2 mpse 1 492836 492836 4135697 8.39 13.07 6.17
3 frag3 0 76925 76925 1683797 21.89 2.51 2.51

1 frag3insert 1 70885 70885 434980 6.14 25.83 0.65
2 frag3rebuild 1 5419 5419 6280 1.16 0.37 0.01

4 dcerpc 0 127332 127332 2426830 19.06 3.62 3.62
5 s5 0 809682 809682 14195602 17.53 21.17 21.17

1 s5tcp 1 765281 765281 14128577 18.46 99.53 21.07
1 s5TcpState 2 742464 742464 13223585 17.81 93.59 19.72

1 s5TcpFlush 3 51987 51987 92918 1.79 0.70 0.14
1 s5TcpProcessRebuilt 4 47355 47355 14548497 307.22 15657. 23 21.70
2 s5TcpBuildPacket 4 47360 47360 41711 0.88 44.89 0.06

2 s5TcpData 3 250035 250035 141490 0.57 1.07 0.21
1 s5TcpPktInsert 4 88173 88173 110136 1.25 77.84 0.16

2 s5TcpNewSess 2 60880 60880 81779 1.34 0.58 0.12
6 eventq 0 2089428 2089428 26690209 12.77 39.81 39.81
7 httpinspect 0 296030 296030 1862359 6.29 2.78 2.78
8 smtp 0 137653 137653 227982 1.66 0.34 0.34
9 decode 0 1057635 1057635 1162456 1.10 1.73 1.73

10 ftptelnet_telnet 0 175 175 175 1.00 0.00 0.00
11 sfportscan 0 881153 881153 518655 0.59 0.77 0.77
12 backorifice 0 35369 35369 4875 0.14 0.01 0.01
13 dns 0 16639 16639 1346 0.08 0.00 0.00
total total 0 1018323 1018323 67046412 65.84 0.00 0.00

Figure 2.2: Preprocessor Profiling Example Output

110

2.5.3 Packet Performance Monitoring (PPM)

PPM provides thresholding mechanisms that can be used to provide a basic level of latency control for snort. It does
not provide a hard and fast latency guarantee but should in effect provide a good average latency control. Both rules
and packets can be checked for latency. The action taken upondetection of excessive latency is configurable. The
following sections describe configuration, sample output,and some implementation details worth noting.

To use PPM, you must build with the –enable-ppm or the –enable-sourcefire option to configure.

PPM is configured as follows:

Packet configuration:
config ppm: max-pkt-time <micro-secs>, \

fastpath-expensive-packets, \
pkt-log, \
debug-pkts

Rule configuration:
config ppm: max-rule-time <micro-secs>, \

threshold count, \
suspend-expensive-rules, \
suspend-timeout <seconds>, \
rule-log [log] [alert]

Packets and rules can be configured separately, as above, or together in just one config ppm statement. Packet and rule
monitoring is independent, so one or both or neither may be enabled.

Configuration

Packet Configuration Options

max-pkt-time <micro-secs>

• enables packet latency thresholding using ’micros-secs’ as the limit.

• default is 0 (packet latency thresholding disabled)

• reasonable starting defaults: 100/250/1000 for 1G/100M/5M nets

fastpath-expensive-packets

• enables stopping further inspection of a packet if the max time is exceeded

• default is off

pkt-log

• enables logging packet event if packet exceeds max-pkt-time

• logging is to syslog or console depending upon snort configuration

• default is no logging

debug-pkts

• enables per packet timing stats to be printed after each packet

• default is off

111

Rule Configuration Options

max-rule-time <micro-secs>

• enables rule latency thresholding using ’micros-secs’ as the limit.

• default is 0 (rule latency thresholding disabled)

• reasonable starting defaults: 100/250/1000 for 1G/100M/5M nets

threshold <count>

• sets the number of cumulative rule time excesses before disabling a rule

• default is 5

suspend-expensive-rules

• enables suspending rule inspection if the max rule time is exceeded

• default is off

suspend-timeout <seconds>

• rule suspension time in seconds

• default is 60 seconds

• set to zero to permanently disable expensive rules

rule-log [log] [alert]

• enables event logging output for rules

• default is no logging

• one or both of the options ’log’ and ’alert’ must be used with ’rule-log’

• the log option enables output to syslog or console dependingupon snort configuration

Examples

Example 1: The following enables packet tracking:

config ppm: max-pkt-time 100

The following enables rule tracking:

config ppm: max-rule-time 50, threshold 5

If fastpath-expensive-packets or suspend-expensive-rules is not used, then no action is taken other than to increment
the count of the number of packets that should be fastpath’d or the rules that should be suspended. A summary of this
information is printed out when snort exits.

Example 2:

The following suspends rules and aborts packet inspection.These rules were used to generate the sample output that
follows.

112

config ppm: \
max-pkt-time 50, fastpath-expensive-packets, \
pkt-log, debug-pkt

config ppm: \
max-rule-time 50, threshold 5, suspend-expensive-rules, \
suspend-timeout 300, rule-log log alert

Sample Snort Output

Sample Snort Startup Output

Packet Performance Monitor Config:
ticks per usec : 1600 ticks
max packet time : 50 usecs
packet action : fastpath-expensive-packets
packet logging : log
debug-pkts : disabled

Rule Performance Monitor Config:
ticks per usec : 1600 ticks
max rule time : 50 usecs
rule action : suspend-expensive-rules
rule threshold : 5
suspend timeout : 300 secs
rule logging : alert log

Sample Snort Run-time Output

...
PPM: Process-BeginPkt[61] caplen=60
PPM: Pkt[61] Used= 8.15385 usecs
PPM: Process-EndPkt[61]

PPM: Process-BeginPkt[62] caplen=342
PPM: Pkt[62] Used= 65.3659 usecs
PPM: Process-EndPkt[62]

PPM: Pkt-Event Pkt[63] used=56.0438 usecs, 0 rules, 1 nc-ru les tested, packet fastpathed.
PPM: Process-BeginPkt[63] caplen=60
PPM: Pkt[63] Used= 8.394 usecs
PPM: Process-EndPkt[63]

PPM: Process-BeginPkt[64] caplen=60
PPM: Pkt[64] Used= 8.21764 usecs
PPM: Process-EndPkt[64]
...

Sample Snort Exit Output

Packet Performance Summary:
max packet time : 50 usecs
packet events : 1
avg pkt time : 0.633125 usecs

Rule Performance Summary:

113

max rule time : 50 usecs
rule events : 0
avg nc-rule time : 0.2675 usecs

Implementation Details

• Enforcement of packet and rule processing times is done after processing each rule. Latency control is not
enforced after each preprocessor.

• This implementation is software based and does not use an interrupt driven timing mechanism and is therefore
subject to the granularity of the software based timing tests. Due to the granularity of the timing measurements
any individual packet may exceed the user specified packet orrule processing time limit. Therefore this imple-
mentation cannot implement a precise latency guarantee with strict timing guarantees. Hence the reason this is
considered a best effort approach.

• Since this implementation depends on hardware based high performance frequency counters, latency threshold-
ing is presently only available on Intel and PPC platforms.

• Time checks are made based on the total system time, not processor usage by Snort. This was a conscious design
decision because when a system is loaded, the latency for a packet is based on the total system time, not just the
processor time the Snort application receives. Therefore,it is recommended that you tune your thresholding to
operate optimally when your system is under load.

2.6 Output Modules

Output modules are new as of version 1.6. They allow Snort to be much more flexible in the formatting and presentation
of output to its users. The output modules are run when the alert or logging subsystems of Snort are called, after
the preprocessors and detection engine. The format of the directives in the config file is very similar to that of the
preprocessors.

Multiple output plugins may be specified in the Snort configuration file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in sequencewhen an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /var/log/snort by default or to a user directed directory (using the-l
command line switch).

Output modules are loaded at runtime by specifying the output keyword in the config file:

output <name>: <options>

output alert_syslog: log_auth log_alert

2.6.1 alert syslog

This module sends alerts to the syslog facility (much like the -s command line switch). This module also allows the
user to specify the logging facility and priority within theSnort config file, giving users greater flexibility in logging
alerts.

Available Keywords

Facilities

• log auth

• log authpriv

• log daemon

114

• log local0

• log local1

• log local2

• log local3

• log local4

• log local5

• log local6

• log local7

• log user

Priorities

• log emerg

• log alert

• log crit

• log err

• log warning

• log notice

• log info

• log debug

Options

• log cons

• log ndelay

• log perror

• log pid

Format

alert_syslog: \
<facility> <priority> <options>

△! NOTE
As WIN32 does not run syslog servers locally by default, a hostname and port can be passed as options. The
default host is 127.0.0.1. The default port is 514.

output alert_syslog: \
[host=<hostname[:<port>],] \
<facility> <priority> <options>

115

Example

output alert_syslog: host=10.1.1.1:514, <facility> <pri ority> <options>

2.6.2 alert fast

This will print Snort alerts in a quick one-line format to a specified output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packet headers to the output file and because it logs to only 1 file.

Format

output alert_fast: [<filename> ["packet"] [<limit>]]
<limit> ::= <number>[(’G’|’M’|K’)]

• filename : the name of the log file. The default name is ¡logdir¿/alert.You may specify ”stdout” for terminal
output. The name may include an absolute or relative path.

• packet : this option will cause multiline entries with full packet headers to be logged. By default, only brief
single-line entries are logged.

• limit : an optional limit on file size which defaults to 128 MB. The minimum is 1 KB. See 2.6.13 for more
information.

Example

output alert_fast: alert.fast

2.6.3 alert full

This will print Snort alert messages with full packet headers. The alerts will be written in the default logging directory
(/var/log/snort) or in the logging directory specified at the command line.

Inside the logging directory, a directory will be created per IP. These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slows Snort down considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

output alert_full: [<filename> [<limit>]]
<limit> ::= <number>[(’G’|’M’|K’)]

• filename : the name of the log file. The default name is ¡logdir¿/alert.You may specify ”stdout” for terminal
output. The name may include an absolute or relative path.

• limit : an optional limit on file size which defaults to 128 MB. The minimum is 1 KB. See 2.6.13 for more
information.

Example

output alert_full: alert.full

116

2.6.4 alert unixsock

Sets up a UNIX domain socket and sends alert reports to it. External programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. This is currently an experimental interface.

Format

alert_unixsock

Example

output alert_unixsock

2.6.5 logtcpdump

The log tcpdump module logs packets to a tcpdump-formatted file. This is useful for performing post-process analysis
on collected traffic with the vast number of tools that are available for examining tcpdump-formatted files.

Format

output log_tcpdump: [<filename> [<limit>]]
<limit> ::= <number>[(’G’|’M’|K’)]

• filename : the name of the log file. The default name is ¡logdir¿/snort.log. The name may include an absolute
or relative path. A UNIX timestamp is appended to the filename.

• limit : an optional limit on file size which defaults to 128 MB. When asequence of packets is to be logged, the
aggregate size is used to test the rollover condition. See 2.6.13 for more information.

Example

output log_tcpdump: snort.log

2.6.6 database

This module from Jed Pickel sends Snort data to a variety of SQL databases. More information on installing and
configuring this module can be found on the [91]incident.orgweb page. The arguments to this plugin are the name of
the database to be logged to and a parameter list. Parametersare specified with the format parameter = argument. see
Figure 2.3 for example usage.

Format

database: <log | alert>, <database type>, <parameter list>

The following parameters are available:

host - Host to connect to. If a non-zero-length string is specified, TCP/IP communication is used. Without a host
name, it will connect using a local UNIX domain socket.

port - Port number to connect to at the server host, or socket filename extension for UNIX-domain connections.

dbname - Database name

117

output database: \
log, mysql, dbname=snort user=snort host=localhost passw ord=xyz

Figure 2.3: Database Output Plugin Configuration

user - Database username for authentication

password - Password used if the database demands password authentication

sensor name - Specify your own name for this Snort sensor. If you do not specify a name, one will be generated
automatically

encoding - Because the packet payload and option data is binary, thereis no one simple and portable way to store it
in a database. Blobs are not used because they are not portable across databases. So i leave the encoding option
to you. You can choose from the following options. Each has its own advantages and disadvantages:

hex (default) - Represent binary data as a hex string.

Storage requirements - 2x the size of the binary

Searchability - very good

Human readability - not readable unless you are a true geek, requires post processing

base64 - Represent binary data as a base64 string.

Storage requirements - ∼1.3x the size of the binary

Searchability - impossible without post processing

Human readability - not readable requires post processing

ascii - Represent binary data as an ASCII string. This is the only option where you will actually lose data.
Non-ASCII Data is represented as a ‘.’. If you choose this option, then data for IP and TCP options will
still be represented as hex because it does not make any sensefor that data to be ASCII.

Storage requirements - slightly larger than the binary because some characters are escaped (&,<,>)

Searchability - very good for searching for a text string impossible if you want to search for binary

human readability - very good

detail - How much detailed data do you want to store? The options are:

full (default) - Log all details of a packet that caused an alert (including IP/TCP options and the payload)

fast - Log only a minimum amount of data. You severely limit the potential of some analysis applications
if you choose this option, but this is still the best choice for some applications. The following fields are
logged:timestamp , signature , source ip , destination ip , source port , destination port , tcp
flags , andprotocol)

Furthermore, there is a logging method and database type that must be defined. There are two logging types available,
log andalert . Setting the type to log attaches the database logging functionality to the log facility within the program.
If you set the type to log, the plugin will be called on the log output chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are five database types available in the current version of the plugin. These aremssql , mysql , postgresql ,
oracle , andodbc . Set the type to match the database you are using.

△! NOTE
The database output plugin does not have the ability to handle alerts that are generated by using thetag
keyword. See section 3.7.5 for more details.

118

2.6.7 csv

The csv output plugin allows alert data to be written in a format easily importable to a database. The output fields and
their order may be customized.

Format

output alert_csv: [<filename> [<format> [<limit>]]]
<format> ::= "default"|<list>
<list> ::= <field>(,<field>)*
<field> ::= "dst"|"src"|"ttl" ...
<limit> ::= <number>[(’G’|’M’|K’)]

• filename : the name of the log file. The default name is ¡logdir¿/alert.csv. You may specify ”stdout” for terminal
output. The name may include an absolute or relative path.

• format : The list of formatting options is below. If the formatting option is ”default”, the output is in the order
of the formatting options listed.

– timestamp

– sig generator

– sig id

– sig rev

– msg

– proto

– src

– srcport

– dst

– dstport

– ethsrc

– ethdst

– ethlen

– tcpflags

– tcpseq

– tcpack

– tcplen

– tcpwindow

– ttl

– tos

– id

– dgmlen

– iplen

– icmptype

– icmpcode

– icmpid

– icmpseq

• limit : an optional limit on file size which defaults to 128 MB. The minimum is 1 KB. See 2.6.13 for more
information.

119

Example

output alert_csv: /var/log/alert.csv default

output alert_csv: /var/log/alert.csv timestamp, msg

2.6.8 unified

The unified output plugin is designed to be the fastest possible method of logging Snort events. The unified output
plugin logs events in binary format, allowing another programs to handle complex logging mechanisms that would
otherwise diminish the performance of Snort.

The nameunified is a misnomer, as the unified output plugin creates two different files, analert file, and alog file.
The alert file contains the high-level details of an event (eg: IPs, protocol, port, message id). The log file contains
the detailed packet information (a packet dump with the associated event ID). Both file types are written in a binary
format described inspo unified.h.

△! NOTE
Files have the file creation time (in Unix Epoch format) appended to each file when it is created.

Format

output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size li mit in MB>]

Example

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

2.6.9 unified 2

The unified2 output plugin is a replacement for the unified output plugin. It has the same performance characteristics,
but a slightly different logging format. See section 2.6.8 on unified logging for more information.

Unified2 can work in one of three modes, packet logging, alertlogging, or true unified logging. Packet logging
includes a capture of the entire packet and is specified withlog unified2 . Likewise, alert logging will only log
events and is specified withalert unified2 . To include both logging styles in a single, unified file, simply specify
unified2 .

When MPLS support is turned on, MPLS labels can be included inunified2 events. Use optionmpls event types to
enable this. If optionmpls event types is not used, then MPLS labels will be not be included in unified2 events.

△! NOTE
By default, unified 2 files have the file creation time (in Unix Epoch format) appended to each file when it is
created.

Format

output alert_unified2: \
filename <base filename> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]

120

output log_unified2: \
filename <base filename> [, <limit <size in MB>] [, nostamp]

output unified2: \
filename <base file name> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]

Example

output alert_unified2: filename snort.alert, limit 128, n ostamp
output log_unified2: filename snort.log, limit 128, nosta mp
output unified2: filename merged.log, limit 128, nostamp
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types

2.6.10 alertprelude

△! NOTE
support to use alertprelude is not built in by default. To use alertprelude, snort must be built with the
–enable-prelude argument passed to ./configure.

The alertprelude output plugin is used to log to a Prelude database. For more information on Prelude, seehttp:
//www.prelude-ids.org/ .

Format

output alert_prelude: \
profile=<name of prelude profile> \
[info=<priority number for info priority alerts>] \
[low=<priority number for low priority alerts>] \
[medium=<priority number for medium priority alerts>]

Example

output alert_prelude: profile=snort info=4 low=3 medium= 2

2.6.11 log null

Sometimes it is useful to be able to create rules that will alert to certain types of traffic but will not cause packet log
entries. In Snort 1.8.2, the lognull plugin was introduced. This is equivalent to using the -n command line option but
it is able to work within a ruletype.

Format

output log_null

Example

output log_null # like using snort -n

ruletype info {
type alert

121

output alert_fast: info.alert
output log_null

}

2.6.12 alertaruba action

△! NOTE
Support to use alertarubaaction is not built in by default. To use alertarubaaction, snort must be built with
the –enable-aruba argument passed to ./configure.

Communicates with an Aruba Networks wireless mobility controller to change the status of authenticated users. This
allows Snort to take action against users on the Aruba controller to control their network privilege levels.

For more information on Aruba Networks access control, seehttp://www.arubanetworks.com/ .

Format

output alert_aruba_action: \
<controller address> <secrettype> <secret> <action>

The following parameters are required:

controller address - Aruba mobility controller address.

secrettype - Secret type, one of ”sha1”, ”md5” or ”cleartext”.

secret - Authentication secret configured on the Aruba mobility controller with the ”aaa xml-api client” configura-
tion command, represented as a sha1 or md5 hash, or a cleartext password.

action - Action to apply to the source IP address of the traffic generating an alert.

blacklist - Blacklist the station by disabling all radio communication.

setrole:rolename - Change the userś role to the specified rolename.

Example

output alert_aruba_action: \
10.3.9.6 cleartext foobar setrole:quarantine_role

2.6.13 Log Limits

This section pertains to logs produced byalert fast , alert full , alert csv , and log tcpdump . unified and
unified2 also may be given limits. Those limits are described in the respective sections.

When a configured limit is reached, the current log is closed and a new log is opened with a UNIX timestamp appended
to the configured log name.

Limits are configured as follows:

<limit> ::= <number>[(<gb>|<mb>|<kb>)]
<gb> ::= ’G’|’g’
<mb> ::= ’M’|’m’
<kb> ::= ’K’|’k’

Rollover will occur at most once per second so if limit is too small for logging rate, limit will be exceeded. Rollover
works correctly if snort is stopped/restarted.

122

2.7 Host Attribute Table

Starting with version 2.8.1, Snort has the capability to useinformation from an outside source to determine both the
protocol for use with Snort rules, and IP-Frag policy (see section 2.2.1) and TCP Stream reassembly policies (see
section 2.2.2). This information is stored in an attribute table, which is loaded at startup. The table is re-read during
run time upon receipt of signal number 30.

Snort associates a given packet with its attribute data fromthe table, if applicable.

For rule evaluation, service information is used instead ofthe ports when the protocol metadata in the rule matches the
service corresponding to the traffic. If the rule doesn’t have protocol metadata, or the traffic doesn’t have any matching
service information, the rule relies on the port information.

△! NOTE
To use a host attribute table, Snort must be configured with the –enable-targetbased flag.

2.7.1 Configuration Format

attribute_table filename <path to file>

2.7.2 Attribute Table File Format

The attribute table uses an XML format and consists of two sections, a mapping section, used to reduce the size of the
file for common data elements, and the host attribute section. The mapping section is optional.

An example of the file format is shown below.

<SNORT_ATTRIBUTES>
<ATTRIBUTE_MAP>

<ENTRY>
<ID>1</ID>
<VALUE>Linux</VALUE>

</ENTRY>
<ENTRY>

<ID>2</ID>
<VALUE>ssh</VALUE>

</ENTRY>
</ATTRIBUTE_MAP>
<ATTRIBUTE_TABLE>

<HOST>
<IP>192.168.1.234</IP>
<OPERATING_SYSTEM>

<NAME>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>

</NAME>
<VENDOR>

<ATTRIBUTE_VALUE>Red Hat</ATTRIBUTE_VALUE>
<CONFIDENCE>99</CONFIDENCE>

</VENDOR>
<VERSION>

<ATTRIBUTE_VALUE>2.6</ATTRIBUTE_VALUE>
<CONFIDENCE>98</CONFIDENCE>

</VERSION>
<FRAG_POLICY>linux</FRAG_POLICY>

123

<STREAM_POLICY>linux</STREAM_POLICY>
</OPERATING_SYSTEM>
<SERVICES>

<SERVICE>
<PORT>

<ATTRIBUTE_VALUE>22</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</PORT>
<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>
<PROTOCOL>

<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>

</PROTOCOL>
<APPLICATION>

<ATTRIBUTE_VALUE>OpenSSH</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
<VERSION>

<ATTRIBUTE_VALUE>3.9p1</ATTRIBUTE_VALUE>
<CONFIDENCE>93</CONFIDENCE>

</VERSION>
</APPLICATION>

</SERVICE>
<SERVICE>

<PORT>
<ATTRIBUTE_VALUE>2300</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</PORT>
<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>
<PROTOCOL>

<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</PROTOCOL>
<APPLICATION>

<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>50</CONFIDENCE>

</APPLICATION>
</SERVICE>

</SERVICES>
<CLIENTS>

<CLIENT>
<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>
<PROTOCOL>

<ATTRIBUTE_VALUE>http</ATTRIBUTE_VALUE>
<CONFIDENCE>91</CONFIDENCE>

</PROTOCOL>
<APPLICATION>

<ATTRIBUTE_VALUE>IE Http Browser</ATTRIBUTE_VALUE>
<CONFIDENCE>90</CONFIDENCE>

124

<VERSION>
<ATTRIBUTE_VALUE>6.0</ATTRIBUTE_VALUE>
<CONFIDENCE>89</CONFIDENCE>

</VERSION>
</APPLICATION>

</CLIENT>
</CLIENTS>

</HOST>
</ATTRIBUTE_TABLE>

</SNORT_ATTRIBUTES>

△! NOTE
With Snort 2.8.1, for a given host entry, the stream and IP frag information are both used. Of the service
attributes, only the IP protocol (tcp, udp, etc), port, and protocol (http, ssh, etc) are used. The application
and version for a given service attribute, and any client attributes are ignored. They will be used in a future
release.

A DTD for verification of the Host Attribute Table XML file is provided with the snort packages.

The confidence metric may be used to indicate the validity of agiven service or client application and its respective
elements. That field is not currently used by Snort, but may bein future releases.

2.7.3 Attribute Table Example

In the example above, a host running Red Hat 2.6 is described.This host has an IP address of 192.168.1.234. On that
host, TCP port 22 is ssh (running Open SSH), and TCP port 2300 is telnet.

The IP stack fragmentation and stream reassembly is mimicked by the ”linux” configuration (see sections 2.2.1 and
2.2.2).

Attribute Table Affect on preprocessors

• Network Layer Preprocessors

Each of the network layer preprocessors (frag3 and stream5)make use of the respectiveFRAGPOLICY and
STREAMPOLICY in terms of how data is handled for reassembly for packets being received by that host.

• Application Layer Preprocessors

The application layer preprocessors (HTTP, SMTP, FTP, Telnet, etc) make use of theSERVICE information for
connections destined to that host on that port.

For example, even if the telnet portion of the FTP/Telnet preprocessor is only configured to inspect port 23,
Snort will inspect packets for a connection to 192.168.1.234 port 2300 as telnet.

Conversely, if, for example, HTTP Inspect is configured to inspect traffic on port 2300, HTTP Inspect will NOT
process the packets on a connection to 192.168.1.234 port 2300 because it is identified as telnet.

Below is a list of the common services used by Snort’s application layer preprocessors and Snort rules (see
below).

http ftp ftp-data telnet smtp ssh tftp
dcerpc netbios-dgm netbios-ns netbios-ssn nntp finger sunrpc
dns isakmp mysql oracle cvs shell x11
imap pop2 pop3 snmp

125

Attribute Table Affect on rules

Similar to the application layer preprocessors, rules configured for specific ports that have a service metadata will be
processed based on the service identified by the attribute table.

When both service metadata is present in the rule and in the connection, Snort uses the service rather than the port. If
there are rules that use the service and other rules that do not but the port matches, Snort will ONLY inspect the rules
that have the service that matches the connection.

The following few scenarios identify whether a rule will be inspected or not.

• Alert: Rule Has Service Metadata, Connection Service Matches

The following rule will be inspected and alert on traffic to host 192.168.1.234 port 2300 because it is identified
as telnet.

alert tcp any any -> any 23 (msg:"Telnet traffic"; flow:to_s erver,established;
sid:10000001; metadata: service telnet;)

• Alert: Rule Has Multiple Service Metadata, Connection Service Matches One of them

The following rule will be inspected and alert on traffic to host 192.168.1.234 port 2300 because it is identified
as telnet.

alert tcp any any -> any 23 (msg:"Telnet traffic"; flow:to_s erver,established;
sid:10000002; metadata: service telnet, service smtp;)

• No Alert: Rule Has Service Metadata, Connection Service Does Not Match, Port Matches

The following rule will NOT be inspected and NOT alert on traffic to host 192.168.1.234 port 2300 because that
traffic is identified as telnet, but the service is ssh.

alert tcp any any -> any 2300 (msg:"SSH traffic"; flow:to_se rver,established;
sid:10000003; metadata: service ssh;)

• Alert: Rule Has No Service Metadata, Port Matches

The following rule will be inspected and alert on traffic to host 192.168.1.234 port 2300 because the port
matches.

alert tcp any any -> any 2300 (msg:"Port 2300 traffic"; flow: to_server,established;
sid:10000004;)

• Alert: Rule Has No Service Metadata, Packet has service + other rules with service

The first rule will NOT be inspected and NOT alert on traffic to host 192.168.1.234 port 2300 because the service
is identified as telnet and there are other rules with that service.

alert tcp any any -> any 2300 (msg:"Port 2300 traffic"; flow: to_server,established;
sid:10000005;)
alert tcp any any -> any 2300 (msg:"Port 2300 traffic"; flow: to_server,established;
sid:10000006; metadata: service telnet;)

• No Alert: Rule Has No Service Metadata, Port Does Not Match

The following rule will NOT be inspected and NOT alert on traffic to host 192.168.1.234 port 2300 because the
port does not match.

alert tcp any any -> any 23 (msg:"Port 23 traffic"; flow:to_s erver,established;
sid:10000007;)

126

2.8 Dynamic Modules

Dynamically loadable modules were introduced with Snort 2.6. They can be loaded via directives insnort.conf or
via command-line options.

△! NOTE
To disable use of dynamic modules, Snort must be configured with the--disable-dynamicplugin flag.

2.8.1 Format

<directive> <parameters>

2.8.2 Directives

Syntax Description
dynamicpreprocessor [file
<shared library path > |
directory <directory of
shared libraries >]

Tells snort to load the dynamic preprocessor shared library(if
file is used) or all dynamic preprocessor shared libraries (if di-
rectory is used). Specifyfile , followed by the full or rel-
ative path to the shared library. Or, specifydirectory , fol-
lowed by the full or relative path to a directory of preprocessor
shared libraries. (Same effect as--dynamic-preprocessor-lib or
--dynamic-preprocessor-lib-dir options). See chapter 4 for more
information on dynamic preprocessor libraries.

dynamicengine [file <shared
library path > | directory
<directory of shared
libraries >]

Tells snort to load the dynamic engine shared library (if fileis used) or
all dynamic engine shared libraries (if directory is used).Specifyfile ,
followed by the full or relative path to the shared library. Or, specify
directory , followed by the full or relative path to a directory of pre-
processor shared libraries. (Same effect as--dynamic-engine-lib or
--dynamic-preprocessor-lib-dir options). See chapter 4 for more
information on dynamic engine libraries.

dynamicdetection [file
<shared library path > |
directory <directory of
shared libraries >]

Tells snort to load the dynamic detection rules shared library (if file
is used) or all dynamic detection rules shared libraries (ifdirectory
is used). Specifyfile , followed by the full or relative path to the
shared library. Or, specifydirectory , followed by the full or relative
path to a directory of detection rules shared libraries. (Same effect as
--dynamic-detection-lib or --dynamic-detection-lib-dir op-
tions). See chapter 4 for more information on dynamic detection rules
libraries.

2.9 Reloading a Snort Configuration

Snort now supports reloading a configuration in lieu of restarting Snort in so as to provide seamless traffic inspection
during a configuration change. A separate thread will parse and create a swappable configuration object while the
main Snort packet processing thread continues inspecting traffic under the current configuration. When a swappable
configuration object is ready for use, the main Snort packet processing thread will swap in the new configuration to
use and will continue processing under the new configuration. Note that for some preprocessors, existing session data
will continue to use the configuration under which they were created in order to continue with proper state for that
session. All newly created sessions will, however, use the new configuration.

127

2.9.1 Enabling support

To enable support for reloading a configuration, add--enable-reload to configure when compiling.

There is also an ancillary option that determines how Snort should behave if any non-reloadable options are changed
(see section 2.9.3 below). This option is enabled by defaultand the behavior is for Snort to restart if any non-
reloadable options are added/modified/removed. To disablethis behavior and have Snort exit instead of restart, add
--disable-reload-error-restart in addition to--enable-reload to configure when compiling.

△! NOTE
This functionality is not currently supported in Windows.

2.9.2 Reloading a configuration

First modify your snort.conf (the file passed to the-c option on the command line).

Then, to initiate a reload, send Snort aSIGHUPsignal, e.g.

$ kill -SIGHUP <snort pid>

△! NOTE
If reload support is not enabled, Snort will restart (as it always has) upon receipt of a SIGHUP.

△! NOTE
An invalid configuration will still result in Snort fatal erroring, so you should test your new configuration
before issuing a reload, e.g.$ snort -c snort.conf -T

2.9.3 Non-reloadable configuration options

There are a number of option changes that are currently non-reloadable because they require changes to output, startup
memory allocations, etc. Modifying any of these options will cause Snort to restart (as aSIGHUPpreviously did) or
exit (if --disable-reload-error-restart was used to configure Snort).

Reloadable configuration options of note:

• Adding/modifying/removing text rules and variables are reloadable.

• Adding/modifying/removing preprocessor configurations are reloadable (except as noted below).

Non-reloadable configuration options of note:

• Adding/modifying/removingshared objects via dynamicdetection, dynamicengine and dynamicpreprocessor are
not reloadable, i.e. any new/modified/removed shared objects will require a restart.

• Any changes to output will require a restart.

Changes to the following options are not reloadable:

attribute_table
config alertfile
config asn1
config chroot

128

config daemon
config detection_filter
config flowbits_size
config interface
config logdir
config max_attribute_hosts
config nolog
config no_promisc
config pkt_count
config rate_filter
config read_bin_file
config response
config set_gid
config set_uid
config snaplen
config threshold
dynamicdetection
dynamicengine
dynamicpreprocessor
output

In certain cases, only some of the parameters to a config option or preprocessor configuration are not reloadable.
Those parameters are listed below the relevant config optionor preprocessor.

config ppm: max-rule-time <int>
rule-log

config profile_rules
filename
print
sort

config profile_preprocs
filename
print
sort

preprocessor dcerpc2
memcap

preprocessor frag3_global
max_frags
memcap
prealloc_frags
prealloc_memcap
disabled

preprocessor perfmonitor
file
snortfile

preprocessor sfportscan
memcap
logfile
disabled

preprocessor stream5_global
memcap
max_tcp
max_udp
max_icmp
track_tcp
track_udp
track_icmp

129

2.10 Multiple Configurations

Snort now supports multiple configurations based on VLAN Id or IP subnet within a single instance of Snort. This will
allow administrators to specify multiple snort configuration files and bind each configuration to one or more VLANs
or subnets rather than running one Snort for each configuration required. Each unique snort configuration file will
create a new configuration instance within snort. VLANs/Subnets not bound to any specific configuration will use the
default configuration. Each configuration can have different preprocessor settings and detection rules.

2.10.1 Creating Multiple Configurations

Default configuration for snort is specified using the existing -c option. A default configuration binds multiple vlans
or networks to non-default configurations, using the following configuration line:

config binding: <path_to_snort.conf> vlan <vlanIdList>
config binding: <path_to_snort.conf> net <ipList>

path to snort.conf - Refers to the absolute or relative path to the snort.conf for specific configuration.

vlanIdList - Refers to the comma seperated list of vlandIds and vlanId ranges. The format for ranges is two vlanId
separated by a ”-”. Spaces are allowed within ranges. Valid vlanId is any number in 0-4095 range. Negative
vland Ids and alphanumeric are not supported.

ipList - Refers to ip subnets. Subnets can be CIDR blocks for IPV6 or IPv4. A maximum of 512 individual IPv4
or IPv6 addresses or CIDRs can be specified.

△! NOTE
Vlan and Subnets can not be used in the same line. Configurations can be applied based on either Vlans or
Subnets not both.

△! NOTE
Even though Vlan Ids 0 and 4095 are reserved, they are included as valid in terms of configuring Snort.

2.10.2 Configuration Specific Elements

Config Options

Generally config options defined within the default configuration are global by default i.e. their value applies to all
other configurations. The following config options are specific to each configuration.

policy_id
policy_mode
policy_version

The following config options are specific to each configuration. If not defined in a configuration, the default values of
the option (not the default configuration values) take effect.

config checksum_drop
config disable_decode_alerts
config disable_decode_drops
config disable_ipopt_alerts
config disable_ipopt_drops

130

config disable_tcpopt_alerts
config disable_tcpopt_drops
config disable_tcpopt_experimental_alerts
config disable_tcpopt_experimental_drops
config disable_tcpopt_obsolete_alerts
config disable_tcpopt_obsolete_drops
config disable_ttcp_alerts
config disable_tcpopt_ttcp_alerts
config disable_ttcp_drops

Rules

Rules are specific to configurations but only some parts of a rule can be customized for performance reasons. If a
rule is not specified in a configuration then the rule will never raise an event for the configuration. A rule shares all
parts of the rule options, including the general options, payload detection options, non-payload detection options, and
post-detection options. Parts of the rule header can be specified differently across configurations, limited to:

Source IP address and port
Destination IP address and port
Action

A higher revision of a rule in one configuration will overrideother revisions of the same rule in other configurations.

Variables

Variables defined using ”var”, ”portvar” and ”ipvar” are specific to configurations. If the rules in a configuration use
variables, those variables must be defined in that configuration.

Preprocessors

Preprocessors configurations can be defined within each vlanor subnet specific configuration. Options controlling
specific preprocessor memory usage, through specific limit on memory usage or number of instances, are processed
only in default policy. The options control total memory usage for a preprocessor across all policies. These options are
ignored in non-default policies without raising an error. Apreprocessor must be configured in default configuration be-
fore it can be configured in non-default configuration. This is required as some mandatory preprocessor configuration
options are processed only in default configuration.

Events and Output

An unique policy id can be assigned by user, to each configuration using the following config line:

config policy_id: <id>

id - Refers to a 16-bit unsigned value. This policy id will be used to identify alerts from a specific configuration in
the unified2 records.

△! NOTE
If no policy id is specified, snort assigns 0 (zero) value to the configuration.

To enable vlanId logging in unified2 records the following option can be used.

131

output alert_unified2: vlan_event_types (alert logging o nly)
output unified2: filename <filename>, vlan_event_types (true unified logging)

filename - Refers to the absolute or relative filename.

vlan event types - When this option is set, snort will use unified2 event type 104 and 105 for IPv4 and IPv6
respectively.

△! NOTE
Each event logged will have the vlanId from the packet if vlanheaders are present otherwise 0 will be used.

2.10.3 How Configuration is applied?

Snort assigns every incoming packet to a unique configuration based on the following criteria. If VLANID is present,
then the innermost VLANID is used to find bound configuration.If the bound configuration is the default configura-
tion, then destination IP address is searched to the most specific subnet that is bound to a non-default configuration.
The packet is assigned non-default configuration if found otherwise the check is repeated using source IP address. In
the end, default configuration is used if no other matching configuration is found.

For addressed based configuration binding, this can lead to conflicts between configurations if source address is bound
to one configuration and destination address is bound to another. In this case, snort will use the first configuration in
the order of definition, that can be applied to the packet.

2.11 Active Response

Snort 2.9 includes a number of changes to better handle inline operation, including:

• a single mechanism for all responses

• fully encoded reset or icmp unreachable packets

• updated flexible response rule option

• updated react rule option

• added block and sblock rule actions

These changes are outlined below.

2.11.1 Enabling Active Response

This enables active responses (snort will send TCP RST or ICMP unreachable/port) when dropping a session.

./configure --enable-active-response / -DACTIVE_RESPON SE

preprocessor stream5_global: \
max_active_responses <max_rsp>, \
min_response_seconds <min_sec>

<max_rsp> ::= (0..25)
<min_sec> ::= (1..300)

Active responses will be encoded based on the triggering packet. TTL will be set to the value captured at session
pickup.

132

2.11.2 Configure Sniping

Configure the number of attempts to land a TCP RST within the session’s current window (so that it is accepted by the
receiving TCP). This sequence ”strafing” is really only useful in passive mode. In inline mode the reset is put straight
into the stream in lieu of the triggering packet so strafing isnot necessary.

Each attempt (sent in rapid succession) has a different sequence number. Each active response will actually cause this
number of TCP resets to be sent. TCP data (sent for react) is multiplied similarly. At most 1 ICMP unreachable is
sent, if and only if attempts ¿ 0.

./configure --enable-active-response

config response: attempts <att>

<att> ::= (1..20)

2.11.3 Flexresp

Flexresp and flexresp2 are replaced with flexresp3.

* Flexresp is deleted; these features are no longer avaliable:

./configure --enable-flexresp / -DENABLE_RESPOND -DENAB LE_RESPONSE
config flexresp: attempts 1

* Flexresp2 is deleted; these features are deprecated, non-functional, and will be deleted in a future release:

./configure --enable-flexresp2 / -DENABLE_RESPOND -DENA BLE_RESPONSE2

config flexresp2_interface: eth0
config flexresp2_attempts: 4
config flexresp2_memcap: 1000000
config flexresp2_rows: 1000

* Flexresp3 is new: the resp rule option keyword is used to configure active responses for rules that fire.

./configure --enable-flexresp3 / -DENABLE_RESPOND -DENA BLE_RESPONSE3

alert tcp any any -> any 80 (content:"a"; resp:<resp_t>; sid :1;)

* resp t includes all flexresp and flexresp2 options:

<resp_t> ::= \
rst_snd | rst_rcv | rst_all | \
reset_source | reset_dest | reset_both | icmp_net | \
icmp_host | icmp_port | icmp_all

2.11.4 React

react is a rule option keyword that enables sending an HTML page on a session and then resetting it. This is built with:

./configure --enable-react / -DENABLE_REACT

The page to be sent can be read from a file:

133

config react: <block.html>

or else the default is used:

<default_page> ::= \
"HTTP/1.1 403 Forbidden\r\n"
"Connection: close\r\n"
"Content-Type: text/html; charset=utf-8\r\n"
"\r\n"
"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\"\r\n " \
" \"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">\ r\n" \
"<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lan g=\"en\">\r\n" \
"<head>\r\n" \
"<meta http-equiv=\"Content-Type\" content=\"text/htm l; charset=UTF-8\" />\r\n" \
"<title>Access Denied</title>\r\n" \
"</head>\r\n" \
"<body>\r\n" \
"<h1>Access Denied</h1>\r\n" \
"<p>%s</p>\r\n" \
"</body>\r\n" \
"</html>\r\n";

Note that the file must contain the entire response, including any HTTP headers. In fact, the response isn’t strictly
limited to HTTP. You could craft a binary payload of arbitrary content.

When the rule is configured, the page is loaded and the selected message, which defaults to:

<default_msg> ::= \
"You are attempting to access a forbidden site.
" \
"Consult your system administrator for details.";

This is an example rule:

drop tcp any any -> any $HTTP_PORTS (\
content: "d"; msg:"Unauthorized Access Prohibited!"; \
react: <react_opts>; sid:4;)

<react_opts> ::= [msg] [, <dep_opts>]

These options are deprecated:

<dep_opts> ::= [block|warn], [proxy <port#>]

The original version sent the web page to one end of the session only if the other end of the session was port 80 or the
optional proxy port. The new version always sends the page tothe client. If no page should be sent, a resp option can
be used instead. The deprecated options are ignored.

2.11.5 Rule Actions

The block and sblock actions have been introduced as synonyms for drop and sdrop to help avoid confusion between
packets dropped due to load (eg lack of available buffers forincoming packets) and packets blocked due to Snort’s
analysis.

134

Chapter 3

Writing Snort Rules

3.1 The Basics

Snort uses a simple, lightweight rules description language that is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rules that will help safeguard your sanity.

Most Snort rules are written in a single line. This was required in versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslash\ to the end of the line.

Snort rules are divided into two logical sections, the rule header and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP addresses and netmasks, and the source and destination ports
information. The rule option section contains alert messages and information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figure 3.1 illustrates a sample Snort rule.

The text up to the first parenthesis is the rule header and the section enclosed in parenthesis contains the rule options.
The words before the colons in the rule options section are called optionkeywords.

△! NOTE
Note that the rule options section is not specifically required by any rule, they are just used for the sake of
making tighter definitions of packets to collect or alert on (or drop, for that matter).

All of the elements in that make up a rule must be true for the indicated rule action to be taken. When taken together,
the elements can be considered to form a logicalAND statement. At the same time, the various rules in a Snort rules
library file can be considered to form a large logicalOR statement.

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the who, where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicated in the rule should show up. The first item in a rule is the rule

alert tcp any any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule

135

action. The rule action tells Snort what to do when it finds a packet that matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, and dynamic. In addition, if you are running Snort in inline mode,
you have additional options which include drop, reject, andsdrop.

1. alert - generate an alert using the selected alert method,and then log the packet

2. log - log the packet

3. pass - ignore the packet

4. activate - alert and then turn on another dynamic rule

5. dynamic - remain idle until activated by an activate rule ,then act as a log rule

6. drop - block and log the packet

7. reject - block the packet, log it, and then send a TCP reset if the protocol is TCP or an ICMP port unreachable
message if the protocol is UDP.

8. sdrop - block the packet but do not log it.

You can also define your own rule types and associate one or more output plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious
{

type log
output log_tcpdump: suspicious.log

}

This example will create a rule type that will log to syslog and a MySQL database:

ruletype redalert
{

type alert
output alert_syslog: LOG_AUTH LOG_ALERT
output database: log, mysql, user=snort dbname=snort host =localhost

}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protocols that Snort currently analyzes for suspicious behavior
– TCP, UDP, ICMP, and IP. In the future there may be more, such as ARP, IGRP, GRE, OSPF, RIP, IPX, etc.

3.2.3 IP Addresses

The next portion of the rule header deals with the IP address and port information for a given rule. The keyword any
may be used to define any address. Snort does not have a mechanism to provide host name lookup for the IP address
fields in the config file. The addresses are formed by a straightnumeric IP address and a CIDR[3] block. The CIDR
block indicates the netmask that should be applied to the rule’s address and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C network,/16 a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR combination 192.168.1.0/24 would signify the block of addresses
from 192.168.1.1 to 192.168.1.255. Any rule that used this designation for, say, the destination address would match
on any address in that range. The CIDR designations give us a nice short-hand way to designate large address spaces
with just a few characters.

136

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"external mountd access";)

Figure 3.2: Example IP Address Negation Rule

alert tcp ![192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content:"|00 01 86 a5| "; \
msg:"external mountd access";)

Figure 3.3: IP Address Lists

In Figure 3.1, the source IP address was set to match for any computer talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addresses, the negation operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP address.The negation operator is indicated with a !. For example,
an easy modification to the initial example is to make it alerton any traffic that originates outside of the local net with
the negation operator as shown in Figure 3.2.

This rule’s IP addresses indicate any tcp packet with a source IP address not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is specified by enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time being, the IP list may not include spaces between the addresses.
See Figure 3.3 for an example of an IP list in action.

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, including any ports, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literallyany port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 for http, etc. Port ranges are indicated with the range operator
:. The range operator may be applied in a number of ways to takeon different meanings, such as in Figure 3.4.

Port negation is indicated by using the negation operator !.The negation operator may be applied against any of the
other rule types (except any, which would translate to none,how Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you could do something like the rule in Figure 3.5.

3.2.5 The Direction Operator

The direction operator -> indicates the orientation, or direction, of the traffic thatthe rule applies to. The IP address
and port numbers on the left side of the direction operator isconsidered to be the traffic coming from the source

log udp any any -> 192.168.1.0/24 1:1024
log udp traffic coming from any port and destination ports ranging from 1 to 1024

log tcp any any -> 192.168.1.0/24 :6000

log tcp traffic from any port going to ports less than or equal to 6000

log tcp any :1024 -> 192.168.1.0/24 500:

log tcp traffic from privileged ports less than or equal to 1024 going to ports greater than or equal to 500

Figure 3.4: Port Range Examples

137

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation

log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

host, and the address and port information on the right side of the operator is the destination host. There is also a
bidirectional operator, which is indicated with a<> symbol. This tells Snort to consider the address/port pairsin
either the source or destination orientation. This is handyfor recording/analyzing both sides of a conversation, suchas
telnet or POP3 sessions. An example of the bidirectional operator being used to record both sides of a telnet session is
shown in Figure 3.6.

Also, note that there is no<- operator. In Snort versions before 1.8.7, the direction operator did not have proper
error checking and many people used an invalid token. The reason the<- does not exist is so that rules always read
consistently.

3.2.6 Activate/Dynamic Rules

△! NOTE
Activate and Dynamic rules are being phased out in favor of a combination of tagging (3.7.5) and flowbits
(3.6.10).

Activate/dynamic rule pairs give Snort a powerful capability. You can now have one rule activate another when it’s
action is performed for a set number of packets. This is very useful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules act just like alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, but they have a different option field: activatedby. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell Snort to adda rule when a specific network event occurs. Dynamic rules
are just like log rules except are dynamically enabled when the activate rule id goes off.

Put ’em together and they look like Figure 3.7.

These rules tell Snort to alert when it detects an IMAP bufferoverflow and collect the next 50 packets headed for port
143 coming from outside $HOMENET headed to $HOMENET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be contained within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in collecting those packets for later analysis.

3.3 Rule Options

Rule options form the heart of Snort’s intrusion detection engine, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using the semicolon (;) character. Rule option keywords are separated
from their arguments with a colon (:) character.

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags:PA; \
content:"|E8C0FFFFFF|/bin"; activates:1; \
msg:"IMAP buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count:50;)

Figure 3.7: Activate/Dynamic Rule Example

138

There are four major categories of rule options.

general These options provide information about the rule but do not have any affect during detection

payload These options all look for data inside the packet payload andcan be inter-related

non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen after a rule has “fired.”

3.4 General Rule Options

3.4.1 msg

The msg rule option tells the logging and alerting engine themessage to print along with a packet dump or to an alert.
It is a simple text string that utilizes the\ as an escape character to indicate a discrete character thatmight otherwise
confuse Snort’s rules parser (such as the semi-colon ; character).

Format

msg:"<message text>";

3.4.2 reference

The reference keyword allows rules to include references toexternal attack identification systems. The plugin currently
supports several specific systems as well as unique URLs. This plugin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a look athttp://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing
descriptions of alerts based on of the sid (See Section 3.4.4).

Table 3.1: Supported Systems
System URL Prefix
bugtraq http://www.securityfocus.com/bid/

cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=
nessus http://cgi.nessus.org/plugins/dump.php3?id=

arachnids (currently down) http://www.whitehats.com/info/IDS
mcafee http://vil.nai.com/vil/content/v
osvdb http://osvdb.org/show/osvdb/

url http://

Format

reference:<id system>, <id>; [reference:<id system>, <id >;]

Examples

alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio"; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids ,IDS411;)

alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-veng lin-linux"; \

139

flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \
reference:arachnids,IDS287; reference:bugtraq,1387; \
reference:cve,CAN-2000-1574;)

3.4.3 gid

The gid keyword (generator id) is used to identify what part of Snortgenerates the event when a particular rule
fires. For example gid 1 is associated with the rules subsystem and various gids over 100 are designated for specific
preprocessors and the decoder. See etc/generators in the source tree for the current generator ids in use. Note that the
gid keyword is optional and if it is not specified in a rule, it will default to 1 and the rule will be part of the general rule
subsystem. To avoid potential conflict with gids defined in Snort (that for some reason aren’t noted it etc/generators),
it is recommended that values starting at 1,000,000 be used.For general rule writing, it is not recommended that the
gid keyword be used. This option should be used with thesid keyword. (See section 3.4.4)

The file etc/gen-msg.map contains contains more information on preprocessor and decoder gids.

Format

gid:<generator id>;

Example

This example is a rule with a generator id of 1000001.

alert tcp any any -> any 80 (content:"BOB"; gid:1000001; sid :1; rev:1;)

3.4.4 sid

The sid keyword is used to uniquely identify Snort rules. This information allows output plugins to identify rules
easily. This option should be used with therev keyword. (See section 3.4.5)

• <100 Reserved for future use

• 100-999,999 Rules included with the Snort distribution

• >=1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messages to Snort rule IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid:<snort rules id>;

Example

This example is a rule with the Snort Rule ID of 1000983.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev :1;)

140

3.4.5 rev

The rev keyword is used to uniquely identify revisions of Snort rules. Revisions, along with Snort rule id’s, allow
signatures and descriptions to be refined and replaced with updated information. This option should be used with the
sid keyword. (See section 3.4.4)

Format

rev:<revision integer>;

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev :1;)

3.4.6 classtype

Theclasstype keyword is used to categorize a rule as detecting an attack that is part of a more general type of attack
class. Snort provides a default set of attack classes that are used by the default set of rules it provides. Defining
classifications for rules provides a way to better organize the event data Snort produces.

Format

classtype:<class name>;

Example

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon ;)

Attack classifications defined by Snort reside in theclassification.config file. The file uses the following syntax:

config classification: <class name>,<class description> ,<default priority>

These attack classifications are listed in Table 3.2. They are currently ordered with 4 default priorities. A priority of1
(high) is the most severe and 4 (very low) is the least severe.

Table 3.2: Snort Default Classifications

Classtype Description Priority

attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
inappropriate-content Inappropriate Content was Detected high
policy-violation Potential Corporate Privacy Violation high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high
web-application-attack Web Application Attack high

141

attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username and

password
medium

denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard protocol or eventmedium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious user-

name was detected
medium

system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web appli-

cation
medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low

Warnings

The classtype option can only use classifications that have been defined insnort.conf by using theconfig
classification option. Snort provides a default set of classifications inclassification.config that are used
by the rules it provides.

3.4.7 priority

Thepriority tag assigns a severity level to rules. Aclasstype rule assigns a default priority (defined by theconfig
classification option) that may be overridden with a priority rule. Examples of each case are given below.

Format

priority:<priority integer>;

Examples

alert tcp any any -> any 80 (msg:"WEB-MISC phf attempt"; flag s:A+; \
content:"/cgi-bin/phf"; priority:10;)

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize:>128; classtype:attempted-admin; priority:10);

142

3.4.8 metadata

Themetadata tag allows a rule writer to embed additional information about the rule, typically in a key-value format.
Certain metadata keys and values have meaning to Snort and are listed in Table 3.3. Keys other than those listed in the
table are effectively ignored by Snort and can be free-form,with a key and a value. Multiple keys are separated by a
comma, while keys and values are separated by a space.

Table 3.3: Snort Metadata Keys
Key Description Value Format
engine Indicate a Shared Library Rule ”shared”
soid Shared Library Rule Generator and SID gid|sid
service Target-Based Service Identifier ”http”

△! NOTE
The service Metadata Key is only meaningful when a Host Atttribute Tableis provided. When the value
exactly matches the service ID as specified in the table, the rule is applied to that packet, otherwise, the rule
is not applied (even if the ports specified in the rule match).See Section 2.7 for details on the Host Attribute
Table.

.

Format

The examples below show an stub rule from a shared library rule. The first uses multiple metadata keywords, the
second a single metadata keyword, with keys separated by commas.

metadata:key1 value1;
metadata:key1 value1, key2 value2;

Examples

alert tcp any any -> any 80 (msg:"Shared Library Rule Example "; \
metadata:engine shared; metadata:soid 3|12345;)

alert tcp any any -> any 80 (msg:"Shared Library Rule Example "; \
metadata:engine shared, soid 3|12345;)

alert tcp any any -> any 80 (msg:"HTTP Service Rule Example"; \
metadata:service http;)

3.4.9 General Rule Quick Reference

Table 3.4: General rule option keywords

Keyword Description
msg The msg keyword tells the logging and alerting engine the message to print with

the packet dump or alert.
reference The reference keyword allows rules to include references toexternal attack iden-

tification systems.
gid The gid keyword (generator id) is used to identify what part of Snort generates the

event when a particular rule fires.

143

sid The sid keyword is used to uniquely identify Snort rules.
rev The rev keyword is used to uniquely identify revisions of Snort rules.
classtype The classtype keyword is used to categorize a rule as detecting an attack that is

part of a more general type of attack class.
priority The priority keyword assigns a severity level to rules.
metadata The metadata keyword allows a rule writer to embed additional information about

the rule, typically in a key-value format.

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important features of Snort. It allows the user to set rules that search for
specific content in the packet payload and trigger response based on that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match functionis called and the (rather computationally expensive) test
is performed against the packet contents. If data exactly matching the argument data string is contained anywhere
within the packet’s payload, the test is successful and the remainder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat complex;it can contain mixed text and binary data. The binary
data is generally enclosed within the pipe (|) character and represented as bytecode. Bytecode represents binary data
as hexadecimal numbers and is a good shorthand method for describing complex binary data. The example below
shows use of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one rule.This allows rules to be tailored for less false positives.

If the rule is preceded by a! , the alert will be triggered on packets that do not contain this content. This is useful when
writing rules that want to alert on packets that do not match acertain pattern

△! NOTE
Also note that the following characters must be escaped inside a content rule:

; \ "

Format

content:[!]"<content string>";

Examples

alert tcp any any -> any 139 (content:"|5c 00|P|00|I|00|P|0 0|E|00 5c|";)

alert tcp any any -> any 80 (content:!"GET";)

△! NOTE
A ! modifier negates the results of the entire content search, modifiers included. For example, if using
content:!"A"; within:50; and there are only 5 bytes of payload and there is no ”A” in those 5 bytes, the
result will return a match. If there must be 50 bytes for a valid match, useisdataat as a pre-cursor to the
content.

144

Changing content behavior

Thecontent keyword has a number of modifier keywords. The modifier keywords change how the previously speci-
fied content works. These modifier keywords are:

Table 3.5: Content Modifiers
Modifier Section
nocase 3.5.2
rawbytes 3.5.3
depth 3.5.4
offset 3.5.5
distance 3.5.6
within 3.5.7
http client body 3.5.8
http cookie 3.5.9
http raw cookie 3.5.10
http header 3.5.11
http raw header 3.5.12
http method 3.5.13
http uri 3.5.14
http raw uri 3.5.15
http stat code 3.5.16
http statmsg 3.5.17
fast pattern 3.5.19

3.5.2 nocase

The nocase keyword allows the rule writer to specify that theSnort should look for the specific pattern, ignoring case.
nocase modifies the previouscontent keyword in the rule.

Format

nocase;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER ro ot"; nocase;)

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packet data, ignoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous content 3.5.1 option.

format

rawbytes;

145

Example

This example tells the content pattern matcher to look at theraw traffic, instead of the decoded traffic provided by the
Telnet decoder.

alert tcp any any -> any 21 (msg:"Telnet NOP"; content:"|FF F 1|"; rawbytes;)

3.5.4 depth

The depth keyword allows the rule writer to specify how far into a packet Snort should search for the specified pattern.
depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look for the specified pattern within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforedepth
is specified.

This keyword allows values greater than or equal to the pattern length being searched. The minimum allowed value is
1. The maximum allowed value for this keyword is 65535.

The value can also be set to a string value referencing a variable extracted by thebyte extract keyword in the same
rule.

The offset and depth keywords may be used together. You can not use depth with itself, distance, or within (to modify
the same content).

Format

depth:[<number>|<var_name>];

3.5.5 offset

The offset keyword allows the rule writer to specify where tostart searching for a pattern within a packet. offset
modifies the previous ’content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the specified pattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforeoffset is
specified.

This keyword allows values from -65535 to 65535.

The value can also be set to a string value referencing a variable extracted by thebyte extract keyword in the same
rule.

The offset and depth keywords may be used together. You can not use offset with itself, distance, or within (to modify
the same content).

Format

offset:[<number>|<var_name>];

Example

The following example shows use of a combined content, offset, and depth search rule.

alert tcp any any -> any 80 (content:"cgi-bin/phf"; offset: 4; depth:20;)

146

3.5.6 distance

The distance keyword allows the rule writer to specify how far into a packet Snort should ignore before starting to
search for the specified pattern relative to the end of the previous pattern match.

This can be thought of as exactly the same thing as offset (SeeSection 3.5.5), except it is relative to the end of the last
pattern match instead of the beginning of the packet.

This keyword allows values from -65535 to 65535.

The distance and within keywords may be used together. You can not use distance with itself, offset, or depth (to
modify the same content).

The value can also be set to a string value referencing a variable extracted by thebyte extract keyword in the same
rule.

Format

distance:[<byte_count>|<var_name>];

Example

The rule below maps to a regular expression of /ABC.{1}DEF/.

alert tcp any any -> any any (content:"ABC"; content:"DEF"; distance:1;)

3.5.7 within

The within keyword is a content modifier that makes sure that at most N bytes are between pattern matches using the
content keyword (See Section 3.5.1). It’s designed to be used in conjunction with the distance (Section 3.5.6) rule
option.

This keyword allows values greater than or equal to pattern length being searched. The maximum allowed value for
this keyword is 65535.

The distance and within keywords may be used together. You can not use within with itself, offset, or depth (to modify
the same content).

The value can also be set to a string value referencing a variable extracted by thebyte extract keyword in the same
rule.

Format

within:[<byte_count>|<var_name>];

Examples

This rule constrains the search of EFG to not go past 10 bytes past the ABC match.

alert tcp any any -> any any (content:"ABC"; content:"EFG"; within:10;)

147

3.5.8 http client body

The httpclient body keyword is a content modifier that restricts the search to the body of an HTTP client request.

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule before ’httpclient body’
is specified.

The amount of data that is inspected with this option dependson thepost depth config option of HttpInspect. Pattern
matches with this keyword wont work whenpost depth is set to -1.

Format

http_client_body;

Examples

This rule constrains the search for the pattern ”EFG” to the raw body of an HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; h ttp_client_body;)

△! NOTE
Thehttp client body modifier is not allowed to be used with therawbytes modifier for the same content.

3.5.9 http cookie

The httpcookie keyword is a content modifier that restricts the search to the extracted Cookie Header field of a HTTP
client request or a HTTP server response (per the configuration of HttpInspect 2.2.6). The cookie buffer also includes
the header name (Cookie for HTTP requests orSet-Cookie for HTTP responses).

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp cookie
is specified. This keyword is dependent on theenable cookie config option. The Cookie Header field will be
extracted only when this option is configured. Ifenable cookie is not specified, the cookie still ends up in HTTP
header. Whenenable cookie is not specified, usinghttp cookie is the same as usinghttp header .

The extracted Cookie Header field may be NORMALIZED, per the configuration of HttpInspect (see 2.2.6).

Format

http_cookie;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Cookie Header field of a HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; h ttp_cookie;)

△! NOTE
Thehttp cookie modifier is not allowed to be used with therawbytes or fast pattern modifiers for the
same content.

148

3.5.10 http raw cookie

The httpraw cookie keyword is a content modifier that restricts the search to the extracted UNNORMALIZED Cookie
Header field of a HTTP client request or a HTTP server response(per the configuration of HttpInspect 2.2.6).

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp raw cookie
is specified. This keyword is dependent on theenable cookie config option. The Cookie Header field will be ex-
tracted only when this option is configured.

Format

http_raw_cookie;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Unnormalized Cookie Header field of a HTTP
client request.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; h ttp_raw_cookie;)

△! NOTE
Thehttp raw cookie modifier is not allowed to be used with therawbytes , http cookie or fast pattern
modifiers for the same content.

3.5.11 http header

The httpheader keyword is a content modifier that restricts the search to the extracted Header fields of a HTTP client
request or a HTTP server response (per the configuration of HttpInspect 2.2.6).

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp header
is specified.

The extracted Header fields may be NORMALIZED, per the configuration of HttpInspect (see 2.2.6).

Format

http_header;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Header fields of a HTTP client request or a HTTP
server response.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; h ttp_header;)

△! NOTE
Thehttp header modifier is not allowed to be used with therawbytes modifier for the same content.

149

3.5.12 http raw header

The httpraw header keyword is a content modifier that restricts the search to the extracted UNNORMALIZED Header
fields of a HTTP client request or a HTTP server response (per the configuration of HttpInspect 2.2.6).

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp raw header
is specified.

Format

http_raw_header;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Header fields of a HTTP client request or a HTTP
server response.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; h ttp_raw_header;)

△! NOTE
Thehttp raw header modifier is not allowed to be used with therawbytes , http header or fast pattern
modifiers for the same content.

3.5.13 http method

The httpmethod keyword is a content modifier that restricts the search to the extracted Method from a HTTP client
request.

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp method
is specified.

Format

http_method;

Examples

This rule constrains the search for the pattern ”GET” to the extracted Method from a HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content:"GET"; h ttp_method;)

△! NOTE
Thehttp method modifier is not allowed to be used with therawbytes modifier for the same content.

3.5.14 http uri

The httpuri keyword is a content modifier that restricts the search tothe NORMALIZED request URI field . Using a
content rule option followed by a httpuri modifier is the same as using a uricontent by itself (see: 3.5.20).

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp uri
is specified.

150

Format

http_uri;

Examples

This rule constrains the search for the pattern ”EFG” to the NORMALIZED URI.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; h ttp_uri;)

△! NOTE
Thehttp uri modifier is not allowed to be used with therawbytes modifier for the same content.

3.5.15 http raw uri

The httpraw uri keyword is a content modifier that restricts the search tothe UNNORMALIZED request URI field .

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp raw uri
is specified.

Format

http_raw_uri;

Examples

This rule constrains the search for the pattern ”EFG” to the UNNORMALIZED URI.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; h ttp_raw_uri;)

△! NOTE
Thehttp raw uri modifier is not allowed to be used with therawbytes , http uri or fast pattern mod-
ifiers for the same content.

3.5.16 http stat code

The httpstat code keyword is a content modifier that restricts the search to the extracted Status code field from a
HTTP server response.

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp stat code
is specified.

The Status Code field will be extracted only if the extendedreponseinspection is configured for the HttpInspect (see
2.2.6).

Format

http_stat_code;

151

Examples

This rule constrains the search for the pattern ”200” to the extracted Status Code field of a HTTP server response.

alert tcp any any -> any 80 (content:"ABC"; content:"200"; h ttp_stat_code;)

△! NOTE
Thehttp stat code modifier is not allowed to be used with therawbytes or fast pattern modifiers for
the same content.

3.5.17 http stat msg

The httpstatmsg keyword is a content modifier that restricts the search tothe extracted Status Message field from a
HTTP server response.

As this keyword is a modifier to the previouscontent keyword, there must be a content in the rule beforehttp stat msg
is specified.

The Status Message field will be extracted only if the extended reponseinspection is configured for the HttpInspect
(see 2.2.6).

Format

http_stat_msg;

Examples

This rule constrains the search for the pattern ”Not Found” to the extracted Status Message field of a HTTP server
response.

alert tcp any any -> any 80 (content:"ABC"; content:"Not Fou nd"; http_stat_msg;)

△! NOTE
The http stat msg modifier is not allowed to be used with therawbytes or fast pattern modifiers for
the same content.

3.5.18 http encode

Thehttp encode keyword will enable alerting based on encoding type presentin a HTTP client request or a HTTP
server response (per the configuration of HttpInspect 2.2.6).

There are eleven keywords associated withhttp encode . The keywords ’uri’, ’header’ and ’cookie’ determine the
HTTP fields used to search for a particular encoding type. Thekeywords ’utf8’, ’doubleencode’, ’nonascii’, ’base36’,
’uencode’, ’ascii’, ’iis encode’ and ’barebyte’ determine the encoding type which would trigger the alert. These
keywords can be combined using a OR operation. Negation is allowed on these keywords.

The config option ’normalizeheaders’ needs to be turned on for rules to work with the keyword ’header’. The keyword
’cookie’ is dependent on config options ’enablecookie’ and ’normalizecookies’ (see 2.2.6). This rule option will not
be able to detect encodings if the specified HTTP fields are notNORMALIZED.

152

Option Description

uri Check for the specified encoding type in HTTP client request URI field.
header Check for the specified encoding type in HTTP request or HTTP response header

fields (depending on the packet flow)
cookie Check for the specified encoding type in HTTP request or HTTP response cookie

header fields (depending on the packet flow)
utf8 Check for utf8 encoding in the specified buffer
double encode Check for double encoding in the specified buffer
non ascii Check for non-ASCII encoding in the specified buffer
base36 Check for base36 encoding in the specified buffer
uencode Check for u-encoding in the specified buffer
bare byte Check for bare byte encoding in the specified buffer
ascii Check for ascii encoding in the specified buffer
iis encode Check for IIS Unicode encoding in the specified buffer

Format

http_encode:<http buffer type>, [!]<encoding type>
http_encode:[uri|header|cookie], [!][<utf8|double_en code|non_ascii|base36|uencode|bare_byte|ascii|iis_e n

Examples

alert tcp any any -> any any (msg:"UTF8/UEncode Encoding pre sent"; http_encode:uri,utf8|uencode;)
alert tcp any any -> any any (msg:"No UTF8"; http_encode:uri ,!utf8;)

△! NOTE
Negation(!) and OR(|) operations cannot be used in conjunction with each other for thehttp encode key-
word. The OR and negation operations work only on the encoding type field and not on http buffer type
field.

3.5.19 fastpattern

The fast pattern keyword is a content modifier that sets the content within a rule to be used with the fast pattern
matcher. Since the default behavior of fast pattern determination is to use the longest content in the rule, it is useful if
a shorter content is more ”unique” than the longer content, meaning the shorter content is less likely to be found in a
packet than the longer content.

The fast pattern matcher is used to select only those rules that have a chance of matching by using a content in the rule
for selection and only evaluating that rule if the content isfound in the payload. Though this may seem to be overhead,
it can significantly reduce the number of rules that need to beevaluated and thus increases performance. The better
the content used for the fast pattern matcher, the less likely the rule will needlessly be evaluated.

As this keyword is a modifier to the previouscontent keyword, there must be acontent rule option in the rule before
fast pattern is specified. Thefast pattern option may be specified only once per rule.

△! NOTE
The fast pattern modifier cannot be used with the following http content modifiers: http cookie ,
http raw uri , http raw header , http raw cookie , http stat code , http stat msg. Note, however,
that it is okay to use thefast pattern modifier if another http content modifier not mentioned aboveis used
in combination with one of the above to modify the same content.

153

△! NOTE
The fast pattern modifier can be used with negated contents only if those contents are not modified with
offset , depth , distance or within .

Format

The fast pattern option can be used alone or optionally take arguments. When used alone, the meaning is simply
to use the specified content as the fast pattern content for the rule.

fast_pattern;

The optional argumentonly can be used to specify that the content should only be used forthe fast pattern matcher
and should not be evaluated as a rule option. This is useful, for example, if a known content must be located in the
payload independent of location in the payload, as it saves the time necessary to evaluate the rule option. Note that (1)
the modified content must be case insensitive since patternsare inserted into the pattern matcher in a case insensitive
manner, (2) negated contents cannot be used and (3) contentscannot have any positional modifiers such asoffset ,
depth , distance or within .

fast_pattern:only;

The optional argument<offset>,<length> can be used to specify that only a portion of the content should be used
for the fast pattern matcher. This is useful if the pattern isvery long and only a portion of the pattern is necessary to
satisfy ”uniqueness” thus reducing the memory required to store the entire pattern in the fast pattern matcher.

fast_pattern:<offset>,<length>;

△! NOTE
The optional argumentsonly and<offset>,<length> are mutually exclusive.

Examples

This rule causes the pattern ”IJKLMNO” to be used with the fast pattern matcher, even though it is shorter than the
earlier pattern ”ABCDEFGH”.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"I JKLMNO"; fast_pattern;)

This rule says to use the content ”IJKLMNO” for the fast pattern matcher and that the content should only be used for
the fast pattern matcher and not evaluated as acontent rule option.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"I JKLMNO"; nocase; fast_pattern:only;)

This rule says to use ”JKLMN” as the fast pattern content, butstill evaluate thecontent rule option as ”IJKLMNO”.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"I JKLMNO"; fast_pattern:1,5;)

3.5.20 uricontent

Theuricontent keyword in the Snort rule language searches the NORMALIZED request URI field. This is equiv-
alent to using thehttp uri modifier to acontent keyword. As such if you are writing rules that include thingsthat
are normalized, such as %2f or directory traversals, these rules will not alert. The reason is that the things you are
looking for are normalized out of the URI buffer.

For example, the URI:

154

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:

/winnt/system32/cmd.exe?/c+ver

Another example, the URI:

/cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%252fp%68f?

will get normalized into:

/cgi-bin/phf?

When writing auricontent rule, write the content that you want to find in the context that the URI will be normalized.
For example, if Snort normalizes directory traversals, do not include directory traversals.

You can write rules that look for the non-normalized contentby using the content option. (See Section 3.5.1)

uricontent can be used with several of the modifiers available to thecontent keyword. These include:

Table 3.6: Uricontent Modifiers
Modifier Section
nocase 3.5.2
depth 3.5.4
offset 3.5.5
distance 3.5.6
within 3.5.7
fast pattern 3.5.19

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.2.6.

Format

uricontent:[!]"<content string>";

△! NOTE
uricontent cannot be modified by arawbytes modifier or any of the other HTTP modifiers. If you wish to
search the UNNORMALIZED request URI field, use thehttp raw uri modifier with acontent option.

3.5.21 urilen

Theurilen keyword in the Snort rule language specifies the exact length, the minimum length, the maximum length,
or range of URI lengths to match.

Format

urilen:min<>max;
urilen:[<|>]<number>;

The following example will match URIs that are 5 bytes long:

155

urilen:5;

The following example will match URIs that are shorter than 5bytes:

urilen:<5;

The following example will match URIs that are greater than 5bytes and less than 10 bytes:

urilen:5<>10;

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.2.6.

3.5.22 isdataat

Verify that the payload has data at a specified location, optionally looking for data relative to the end of the previous
content match.

Format

isdataat:[!]<int>[, relative|rawbytes];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,r elative; \
content:!"|0a|"; within:50;)

This rule looks for the string PASS exists in the packet, thenverifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline character within 50 bytes of the end of the PASS string.

When therawbytes modifier is specified withisdataat , it looks at the raw packet data, ignoring any decoding that
was done by the preprocessors. This modifier will work with the relative modifier as long as the previous content
match was in the raw packet data.

A ! modifier negates the results of the isdataat test. It will alert if a certain amount of data is not present within
the payload. For example, the rule with modifierscontent:"foo"; isdataat:!10,relative; would alert if there
were not 10 bytes after ”foo” before the payload ended.

3.5.23 pcre

The pcre keyword allows rules to be written using perl compatible regular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE web site http://www.pcre.org

Format

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEG RUBPHMCOIDKYS]";

The post-re modifiers set compile time flags for the regular expression. See tables 3.7, 3.8, and 3.9 for descriptions of
each modifier.

△! NOTE
The modifiers R (relative) and B (rawbytes) are not allowed with any of the HTTP modifiers such as U, I, P,
H, D, M, C, K, S and Y.

156

Table 3.7: Perl compatible modifiers forpcre
i case insensitive
s include newlines in the dot metacharacter
m By default, the string is treated as one big line of characters. ˆ and $ match at

the beginning and ending of the string. When m is set, ˆ and $ match immediately
following or immediately before any newline in the buffer, as well as the very start
and very end of the buffer.

x whitespace data characters in the pattern are ignored except when escaped or in-
side a character class

Table 3.8: PCRE compatible modifiers forpcre
A the pattern must match only at the start of the buffer (same asˆ)
E Set $ to match only at the end of the subject string. Without E,$ also matches

immediately before the final character if it is a newline (butnot before any other
newlines).

G Inverts the ”greediness” of the quantifiers so that they are not greedy by default,
but become greedy if followed by ”?”.

Example

This example performs a case-insensitive search for the string BLAH in the payload.

alert ip any any -> any any (pcre:"/BLAH/i";)

△! NOTE
Snort’s handling of multiple URIs with PCRE does not work as expected. PCRE when used without a
uricontent only evaluates the first URI. In order to use pcre to inspect all URIs, you must use either a
content or a uricontent.

3.5.24 filedata

This option is used to place the cursor (used to walk the packet payload in rules processing) at the beginning of either
the entity body of a HTTP response or the SMTP body data. For this option to work with HTTP response, certain
HTTP Inspect options such asextended response inspection and inspect gzip (for decompressed gzip data)
needs to be turned on. See 2.2.6 for more details.

When used with argumentmime it places the cursor at the beginning of the base64 decoded MIME attachment or
base64 decoded MIME body. This is dependent on the SMTP configoptionenable mime decoding . See 2.2.7 for
more details.

Format

file_data;
file_data:mime;

This option matches if there is HTTP response body or SMTP body or SMTP MIME base64 decoded data. This
option will operate similarly to thedce stub data option added with DCE/RPC2, in that it simply sets a reference
for other relative rule options (byte test, byte jump, pcre)to use. Thisfile data can point to either a file or a block
of data.

157

Table 3.9: Snort specific modifiers forpcre
R Match relative to the end of the last pattern match. (Similarto distance:0;)
U Match the decoded URI buffers (Similar touricontent and http uri). This

modifier is not allowed with the unnormalized HTTP request uri buffer modifier(I)
for the same content.

I Match the unnormalized HTTP request uri buffer (Similar tohttp raw uri). This
modifier is not allowed with the HTTP request uri buffer modifier(U) for the same
content.

P Match unnormalized HTTP request body (Similar tohttp client body)
H Match normalized HTTP request or HTTP response header (Similar to

http header). This modifier is not allowed with the unnormalized HTTP request
or HTTP response header modifier(D) for the same content.

D Match unnormalized HTTP request or HTTP response header (Similar to
http raw header). This modifier is not allowed with the normalized HTTP re-
quest or HTTP response header modifier(H) for the same content.

M Match normalized HTTP request method (Similar tohttp method)
C Match normalized HTTP request or HTTP response cookie (Similar to

http cookie). This modifier is not allowed with the unnormalized HTTP request
or HTTP response cookie modifier(K) for the same content.

K Match unnormalized HTTP request or HTTP response cookie (Similar to
http raw cookie). This modifier is not allowed with the normalized HTTP re-
quest or HTTP response cookie modifier(C) for the same content.

S Match HTTP response status code (Similar tohttp stat code)
Y Match HTTP response status message (Similar tohttp stat msg)
B Do not use the decoded buffers (Similar to rawbytes)
O Override the configured pcre match limit and pcre match limitrecursion for this

expression (See section 2.1.3). It completely ignores the limits while evaluating
the pcre pattern specified.

△! NOTE
Multiple base64 encoded attachments in one packet are pipelined.

Example

alert tcp any 80 -> any any(msg:"foo at the start of http respo nse body"; \
file_data; content:"foo"; nocase; within:3;)
alert tcp any any -> any any(msg:"MIME BASE64 Encoded Data"; \
file_data:mime; content:"foo"; within:10;)

3.5.25 base64decode

This option is used to decode the base64 encoded data. This option is particularly useful in case of HTTP headers such
as HTTP authorization headers. This option unfolds the databefore decoding it.

Format

base64_decode[:[bytes <bytes_to_decode>][,][offset <o ffset>[, relative]]];

158

Option Description

bytes Number of base64 encoded bytes to decode. This argument takes positive and
non-zero values only. When this option is not specified we look for base64 en-
coded data till either the end of header line is reached or endof packet payload is
reached.

offset Determines the offset relative to the doeptr when the optionrelative is specified
or relative to the start of the packet payload to begin inspection of base64 encoded
data. This argument takes positive and non-zero values only.

relative Specifies the inspection for base64 encoded data is relativeto the doeptr.

The above arguments tobase64 decode are optional.

△! NOTE
This option can be extended to protocols with folding similar to HTTP. If folding is not present the search for
base64 encoded data will end when we see a carriage return or line feed or both without a following space or
tab.
This option needs to be used in conjunction withbase64 data for any other relative rule options to work on
base64 decoded buffer.

Examples

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"Base64 Encoded Data"; base64_decode; base64_data; \
content:"foo bar"; within:20;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"Authorization NTLM"; content:"Authorization: NTL M";
base64_decode:relative; base64_data; content:"NTLMSSP "; \
within:20;)

alert tcp any any -> any any (msg:"Authorization NTLM"; \
content:"Authorization:"; http_header; \
base64_decode:bytes 12, offset 6, relative; base64_data; \
content:"NTLMSSP"; within:8;)

3.5.26 base64data

This option is used to place the cursor (used to walk the packet payload in rules processing) at the beginning of the
base64 decode buffer if present. This option does not take any arguments. The rule optionbase64 decode needs to
be specified before thebase64 data option.

Format

base64_data;

This option matches if there is base64 decoded buffer. This option will operate similarly to thefile data option, in
that it simply sets a reference for other relative rule options (byte test, byte jump, pcre) to use.

△! NOTE
Any non-relative rule options in the rule will reset the cursor(doeptr) from base64 decode buffer.
Fast pattern content matches are not allowed with this buffer.

159

Example

alert tcp any any -> any any (msg:"Authorization NTLM"; \
content:"Authorization:"; http_header; \
base64_decode:bytes 12, offset 6, relative; base64_data; \
content:"NTLMSSP"; within:8;)

3.5.27 bytetest

Test a byte field against a specific value (with operator). Capable of testing binary values or converting representative
byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read Section 3.9.5.

Format

byte_test:<bytes to convert>, [!]<operator>, <value>, <o ffset> \
[, relative][, <endian>][, string, <number type>][, dce];

bytes = 1 - 10
operator = ’<’ | ’=’ | ’>’ | ’&’ | ’ˆ’
value = 0 - 4294967295
offset = -65535 to 65535

Option Description

bytes to convert Number of bytes to pick up from the packet. The allowed valuesare 1 to 10 when used withoutdce .
If used withdce allowed values are 1, 2 and 4.

operator Operation to perform to test the value:

• < - less than

• > - greater than

• = - equal

• & - bitwise AND

• ˆ - bitwise OR

value Value to test the converted value against
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
endian Endian type of the number being read:

• big - Process data as big endian (default)

• little - Process data as little endian

string Data is stored in string format in packet
number type Type of number being read:

• hex - Converted string data is represented in hexadecimal

• dec - Converted string data is represented in decimal

• oct - Converted string data is represented in octal

dce Let the DCE/RPC 2 preprocessor determine the byte order of the value to be converted. See section
2.2.13 for a description and examples (2.2.13 for quick reference).

Any of the operators can also include! to check if the operator is not true. If! is specified without an operator, then the operator is set to= .

△! NOTE
Snort uses the C operators for each of these operators. If the& operator is used, then it would be the same as usingif (data & value){
do something();}

Examples

alert udp $EXTERNAL_NET any -> $HOME_NET any \

160

(msg:"AMD procedure 7 plog overflow"; \
content:"|00 04 93 F3|"; \
content:"|00 00 00 07|"; distance:4; within:4; \
byte_test:4, >, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow"; \
content:"|00 04 93 F3|"; \
content:"|00 00 00 07|"; distance:4; within:4; \
byte_test:4, >, 1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test:4, =, 1234, 0, string, dec; \
msg:"got 1234!";)

alert udp any any -> any 1235 \
(byte_test:3, =, 123, 0, string, dec; \
msg:"got 123!";)

alert udp any any -> any 1236 \
(byte_test:2, =, 12, 0, string, dec; \
msg:"got 12!";)

alert udp any any -> any 1237 \
(byte_test:10, =, 1234567890, 0, string, dec; \
msg:"got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test:8, =, 0xdeadbeef, 0, string, hex; \
msg:"got DEADBEEF!";)

3.5.28 bytejump

Thebyte jump keyword allows rules to be written for length encoded protocols trivially. By having an option that reads the length of a portion of
data, then skips that far forward in the packet, rules can be written that skip over specific portions of length-encoded protocols and perform detection
in very specific locations.

Thebyte jump option does this by reading some number of bytes, convert them to their numeric representation, move that many bytes forward and
set a pointer for later detection. This pointer is known as the detect offset end pointer, or doeptr.

For a more detailed explanation, please read Section 3.9.5.

Format

byte_jump:<bytes_to_convert>, <offset> \
[, relative][, multiplier <mult_value>][, <endian>][, st ring, <number_type>]\
[, align][, from_beginning][, post_offset <adjustment va lue>][, dce];

bytes = 1 - 10
offset = -65535 to 65535
mult_value = 0 - 65535
post_offset = -65535 to 65535

161

Option Description

bytes to convert Number of bytes to pick up from the packet. The allowed valuesare 1 to 10 when used withoutdce .
If used withdce allowed values are 1, 2 and 4.

offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
multiplier <value > Multiply the number of calculated bytes by<value > and skip forward that number of bytes.
big Process data as big endian (default)
little Process data as little endian
string Data is stored in string format in packet
hex Converted string data is represented in hexadecimal
dec Converted string data is represented in decimal
oct Converted string data is represented in octal
align Round the number of converted bytes up to the next 32-bit boundary
from beginning Skip forward from the beginning of the packet payload instead of from the current position in the

packet.
post offset <value > Skip forward or backwards (positive of negative value)by <value > number of bytes after the other

jump options have been applied.
dce Let the DCE/RPC 2 preprocessor determine the byte order of the value to be converted. See section

2.2.13 for a description and examples (2.2.13 for quick reference).

Example

alert udp any any -> any 32770:34000 (content:"|00 01 86 B8|" ; \
content:"|00 00 00 01|"; distance:4; within:4; \
byte_jump:4, 12, relative, align; \
byte_test:4, >, 900, 20, relative; \
msg:"statd format string buffer overflow";)

3.5.29 byteextract

Thebyte extract keyword is another useful option for writing rules against length-encoded protocols. It reads in some number of bytes from the
packet payload and saves it to a variable. These variables can be referenced later in the rule, instead of using hard-coded values.

△! NOTE
Only two byte extract variables may be created per rule. They can be re-used in the same rule any number of times.

Format

byte_extract:<bytes_to_extract>, <offset>, <name> \
[, relative][, multiplier <multiplier value>][, <endian>]\
[, string, <number_type>][, align <align value>][, dce]

Option Description

bytes to convert Number of bytes to pick up from the packet
offset Number of bytes into the payload to start processing
name Name of the variable. This will be used to reference the variable in other rule options.
relative Use an offset relative to last pattern match
multiplier <value > Multiply the bytes read from the packet by<value > and save that number into the variable.
big Process data as big endian (default)
little Process data as little endian
dce Use the DCE/RPC 2 preprocessor to determine the byte-ordering. The DCE/RPC 2 preprocessor must

be enabled for this option to work.
string Data is stored in string format in packet
hex Converted string data is represented in hexadecimal
dec Converted string data is represented in decimal
oct Converted string data is represented in octal
align <value > Round the number of converted bytes up to the next<value >-byte boundary.<value > may be2

or 4.

Other options which use byteextract variables

A byte extract rule option detects nothing by itself. Its use is in extracting packet data for use in other rule options. Here is a list of places where
byte extract variables can be used:

162

Rule Option Arguments that Take Variables

content /uricontent offset , depth , distance , within
byte test offset , value
byte jump offset
isdataat offset

Examples

This example uses two variables to:

• Read the offset of a string from a byte at offset 0.

• Read the depth of a string from a byte at offset 1.

• Use these values to constrain a pattern match to a smaller area.

alert tcp any any -> any any (byte_extract:1, 0, str_offset; \
byte_extract:1, 1, str_depth; \
content:"bad stuff"; offset:str_offset; depth:str_dept h; \
msg:"Bad Stuff detected within field";)

3.5.30 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT b ounce attempt"; \
flow:to_server,established; content:"PORT"; nocase; ft pbounce; pcre:"/ˆPORT/smi";\
classtype:misc-attack; sid:3441; rev:1;)

3.5.31 asn1

The ASN.1 detection plugin decodes a packet or a portion of a packet, and looks for various malicious encodings.

Multiple options can be used in an ’asn1’ option and the implied logic is boolean OR. So if any of the arguments evaluate as true, the whole option
evaluates as true.

The ASN.1 options provide programmatic detection capabilities as well as some more dynamic type detection. If an optionhas an argument, the
option and the argument are separated by a space or a comma. The preferred usage is to use a space between option and argument.

Format

asn1:[bitstring_overflow][, double_overflow][, oversi ze_length <value>][, absolute_offset <value>|relative_ offset <value>];

Option Description
bitstring overflow Detects invalid bitstring encodings that are known to be remotely exploitable.
double overflow Detects a double ASCII encoding that is larger than a standard buffer. This is known to be an ex-

ploitable function in Microsoft, but it is unknown at this time which services may be exploitable.
oversize length <value > Compares ASN.1 type lengths with the supplied argument. Thesyntax looks like, “oversizelength

500”. This means that if an ASN.1 type is greater than 500, then this keyword is evaluated as true.
This keyword must have one argument which specifies the length to compare against.

absolute offset <value > This is the absolute offset from the beginning of the packet.For example, if you wanted to decode
snmp packets, you would say “absoluteoffset 0”. absolute offset has one argument, the offset
value. Offset may be positive or negative.

relative offset <value > This is the relative offset from the last content match or byte test/jump.
relative offset has one argument, the offset number. So if you wanted to start
decoding and ASN.1 sequence right after the content “foo”, you would specify
’content:"foo"; asn1:bitstring_overflow, relative_off set 0’ . Offset values may
be positive or negative.

163

Examples

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \
asn1:oversize_length 10000, absolute_offset 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content :"foo"; \
asn1:bitstring_overflow, relative_offset 0;)

3.5.32 cvs

The CVS detection plugin aids in the detection of: Bugtraq-10384, CVE-2004-0396: ”Malformed Entry Modified and Unchanged flag insertion”.
Default CVS server ports are 2401 and 514 and are included in the default ports for stream reassembly.

△! NOTE
This plugin cannot do detection over encrypted sessions, e.g. SSH (usually port 22).

Format

cvs:<option>;

Option Description
invalid-entry Looks for an invalid Entry string, which is a way of causing a heap overflow (see CVE-2004-0396)

and bad pointer derefenece in versions of CVS 1.11.15 and before.

Examples

alert tcp any any -> any 2401 (msg:"CVS Invalid-entry"; \
flow:to_server,established; cvs:invalid-entry;)

3.5.33 dceiface

See the DCE/RPC 2 Preprocessor section 2.2.13 for a description and examples of using this rule option.

3.5.34 dceopnum

See the DCE/RPC 2 Preprocessor section 2.2.13 for a description and examples of using this rule option.

3.5.35 dcestub data

See the DCE/RPC 2 Preprocessor section 2.2.13 for a description and examples of using this rule option.

3.5.36 sslversion

See the SSL/TLS Preprocessor section 2.2.11 for a description and examples of using this rule option.

3.5.37 sslstate

See the SSL/TLS Preprocessor section 2.2.11 for a description and examples of using this rule option.

3.5.38 Payload Detection Quick Reference

Table 3.10: Payload detection rule option keywords

Keyword Description
content The content keyword allows the user to set rules that search for specific content in the packet payload

and trigger response based on that data.

164

rawbytes The rawbytes keyword allows rules to look at the raw packet data, ignoring any decoding that was
done by preprocessors.

depth The depth keyword allows the rule writer to specify how far into a packet Snort should search for the
specified pattern.

offset The offset keyword allows the rule writer to specify where tostart searching for a pattern within a
packet.

distance The distance keyword allows the rule writer to specify how far into a packet Snort should ignore before
starting to search for the specified pattern relative to the end of the previous pattern match.

within The within keyword is a content modifier that makes sure that at most N bytes are between pattern
matches using the content keyword.

uricontent The uricontent keyword in the Snort rule language searches the normalized request URI field.
isdataat The isdataat keyword verifies that the payload has data at a specified location.
pcre The pcre keyword allows rules to be written using perl compatible regular expressions.
byte test The bytetest keyword tests a byte field against a specific value (with operator).
byte jump The bytejump keyword allows rules to read the length of a portion of data, then skip that far forward

in the packet.
ftpbounce The ftpbounce keyword detects FTP bounce attacks.
asn1 The asn1 detection plugin decodes a packet or a portion of a packet, and looks for various malicious

encodings.
cvs The cvs keyword detects invalid entry strings.
dce iface See the DCE/RPC 2 Preprocessor section 2.2.13.
dce opnum See the DCE/RPC 2 Preprocessor section 2.2.13.
dce stub data See the DCE/RPC 2 Preprocessor section 2.2.13.

3.6 Non-Payload Detection Rule Options

3.6.1 fragoffset

The fragoffset keyword allows one to compare the IP fragmentoffset field against a decimal value. To catch all the first fragments of an IP session,
you could use the fragbits keyword and look for the More fragments option in conjunction with a fragoffset of 0.

Format

fragoffset:[!|<|>]<number>;

Example

alert ip any any -> any any \
(msg:"First Fragment"; fragbits:M; fragoffset:0;)

3.6.2 ttl

The ttl keyword is used to check the IP time-to-live value. This option keyword was intended for use in the detection of traceroute attempts. This
keyword takes numbers from 0 to 255.

Format

ttl:[<, >, =, <=, >=]<number>;
ttl:[<number>]-[<number>];

Example

This example checks for a time-to-live value that is less than 3.

ttl:<3;

This example checks for a time-to-live value that between 3 and 5.

165

ttl:3-5;

This example checks for a time-to-live value that between 0 and 5.

ttl:-5;

This example checks for a time-to-live value that between 5 and 255.

ttl:5-;

Few other examples are as follows:

ttl:<=5;
ttl:>=5;
ttl:=5;

The following examples are NOT allowed by ttl keyword:

ttl:=>5;
ttl:=<5;
ttl:5-3;

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specific value.

Format

tos:[!]<number>;

Example

This example looks for a tos value that is not 4

tos:!4;

3.6.4 id

The id keyword is used to check the IP ID field for a specific value. Some tools (exploits, scanners and other odd programs) set this field specifically
for various purposes, for example, the value 31337 is very popular with some hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.

id:31337;

166

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option is present.

The following options may be checked:

rr - Record Route

eol - End of list

nop - No Op

ts - Time Stamp

sec - IP Security

esec - IP Extended Security

lsrr - Loose Source Routing

lsrre - Loose Source Routing (For MS99-038 and CVE-1999-0909)

ssrr - Strict Source Routing

satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict and loose source routing which aren’t used in any widespread internet applications.

Format

ipopts:<rr|eol|nop|ts|sec|esec|lsrr|lsrre|ssrr|sati d|any>;

Example

This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

Warning

Only a single ipopts keyword may be specified per rule.

3.6.6 fragbits

The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP header.

The following bits may be checked:

M - More Fragments

D - Don’t Fragment

R - Reserved Bit

The following modifiers can be set to change the match criteria:

+ match on the specified bits, plus any others

* match if any of the specified bits are set

! match if the specified bits are not set

Format

fragbits:[+*!]<[MDR]>;

Example

This example checks if the More Fragments bit and the Do not Fragment bit are set.

fragbits:MD+;

167

3.6.7 dsize

The dsize keyword is used to test the packet payload size. This may be used to check for abnormally sized packets. In many cases, it is useful for
detecting buffer overflows.

Format

dsize:min<>max;
dsize:[<|>]<number>;

Example

This example looks for a dsize that is between 300 and 400 bytes.

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless of thesize of the payload.

3.6.8 flags

The flags keyword is used to check if specific TCP flag bits are present.

The following bits may be checked:

F - FIN - Finish (LSB in TCP Flags byte)

S - SYN - Synchronize sequence numbers

R - RST - Reset

P - PSH - Push

A - ACK - Acknowledgment

U - URG - Urgent

1 - CWR - Congestion Window Reduced (MSB in TCP Flags byte)

2 - ECE - ECN-Echo (If SYN, then ECN capable. Else, CE flag in IP header is set)

0 - No TCP Flags Set

The following modifiers can be set to change the match criteria:

+ - match on the specified bits, plus any others

* - match if any of the specified bits are set

! - match if the specified bits are not set

To handle writing rules for session initiation packets suchas ECN where a SYN packet is sent with the previously reservedbits 1 and 2 set, an
option mask may be specified. A rule could check for a flags value of S,12 if one wishes to find packets with just the syn bit, regardless of the values
of the reserved bits.

Format

flags:[!|*|+]<FSRPAU120>[,<FSRPAU12>];

Example

This example checks if just the SYN and the FIN bits are set, ignoring reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

168

3.6.9 flow

The flow keyword is used in conjunction with TCP stream reassembly (see Section 2.2.2). It allows rules to only apply to certain directions of the
traffic flow.

This allows rules to only apply to clients or servers. This allows packets related to $HOMENET clients viewing web pages to be distinguished
from servers running in the $HOMENET.

The established keyword will replace theflags:+A used in many places to show established TCP connections.

Options

Option Description

to client Trigger on server responses from A to B
to server Trigger on client requests from A to B
from client Trigger on client requests from A to B
from server Trigger on server responses from A to B
established Trigger only on established TCP connections
not established Trigger only when no TCP connection is established
stateless Trigger regardless of the state of the stream processor (useful for packets that are designed to cause

machines to crash)
no stream Do not trigger on rebuilt stream packets (useful for dsize and stream5)
only stream Only trigger on rebuilt stream packets
no frag Do not trigger on rebuilt frag packets
only frag Only trigger on rebuilt frag packets

Format

flow:[(established|not_established|stateless)]
[,(to_client|to_server|from_client|from_server)]
[,(no_stream|only_stream)]
[,(no_frag|only_frag)];

Examples

alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming d etected"; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg:"Port 0 TCP traffi c"; \
flow:stateless;)

3.6.10 flowbits

The flowbits keyword is used in conjunction with conversation tracking from the Stream preprocessor (see Section2.2.2). It allows rules to track
states during a transport protocol session. The flowbits option is most useful for TCP sessions, as it allows rules to generically track the state of an
application protocol.

There are eight keywords associated with flowbits. Most of the options need a user-defined name for the specific state that is being checked. This
string should be limited to any alphanumeric string including periods, dashes, and underscores. The keywords set and toggle take an optional
argument which specifies the group to which the keywords willbelong. When no group name is specified the flowbits will belong to a default
group. All the flowbits in a particular group (with an exception of default group) are mutually exclusive. A particular flow cannot belong to more
than one group.

Option Description

set Sets the specified state for the current flow and unsets all theother flowbits in a group when a
GROUPNAME is specified.

unset Unsets the specified state for the current flow.
toggle Sets the specified state if the state is unset and unsets all the other flowbits in a group when a

GROUPNAME is specified, otherwise unsets the state if the state is set.
isset Checks if the specified state is set.
isnotset Checks if the specified state is not set.
noalert Cause the rule to not generate an alert, regardless of the rest of the detection options.
reset Reset all states on a given flow.

169

Format

flowbits:[set|unset|toggle|isset|isnotset|noalert|r eset][, <STATE_NAME>][, <GROUP_NAME>];

Examples

alert tcp any 143 -> any any (msg:"IMAP login";
content:"OK LOGIN"; flowbits:set,logged_in;
flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST ";
flowbits:isset,logged_in;)

3.6.11 seq

The seq keyword is used to check for a specific TCP sequence number.

Format

seq:<number>;

Example

This example looks for a TCP sequence number of 0.

seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowledgenumber.

Format

ack:<number>;

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

3.6.13 window

The window keyword is used to check for a specific TCP window size.

Format

window:[!]<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

170

3.6.14 itype

The itype keyword is used to check for a specific ICMP type value.

Format

itype:min<>max;
itype:[<|>]<number>;

Example

This example looks for an ICMP type greater than 30.

itype:>30;

3.6.15 icode

The icode keyword is used to check for a specific ICMP code value.

Format

icode:min<>max;
icode:[<|>]<number>;

Example

This example looks for an ICMP code greater than 30.

icode:>30;

3.6.16 icmpid

The icmpid keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular pluginwas developed to
detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.

icmp_id:0;

3.6.17 icmpseq

The icmpseq keyword is used to check for a specific ICMP sequence value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular pluginwas developed to
detect the stacheldraht DDoS agent.

Format

icmp_seq:<number>;

171

Example

This example looks for an ICMP Sequence of 0.

icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, version, and procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbers by using ’*’;

Format

rpc:<application number>, [<version number>|*], [<proce dure number>|*]>;

Example

The following example looks for an RPC portmap GETPORT request.

alert tcp any any -> any 111 (rpc:100000, *, 3;);

Warning

Because of the fast pattern matching engine, the RPC keywordis slower than looking for the RPC values by using normal content matching.

3.6.19 ipproto

The ip proto keyword allows checks against the IP protocol header.For a list of protocols that may be specified by name, see /etc/protocols.

Format

ip_proto:[!|>|<] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ip is the same as the destination IP.

Format

sameip;

Example

This example looks for any traffic where the Source IP and the Destination IP is the same.

alert ip any any -> any any (sameip;)

172

3.6.21 streamreassemble

The streamreassemble keyword allows a rule to enable or disable TCP stream reassembly on matching traffic.

△! NOTE
The streamreassemble option is only available when the Stream5 preprocessor is enabled.

Format

stream_reassemble:<enable|disable>, <server|client|b oth>[, noalert][, fastpath];

• The optionalnoalert parameter causes the rule to not generate an alert when it matches.

• The optionalfastpath parameter causes Snort to ignore the rest of the connection.

Example

For example, to disable TCP reassembly for client traffic when we see a HTTP 200 Ok Response message, use:

alert tcp any 80 -> any any (flow:to_client, established; co ntent:"200 OK";
stream_reassemble:disable,client,noalert;)

3.6.22 streamsize

The streamsize keyword allows a rule to match traffic according to the number of bytes observed, as determined by the TCP sequence numbers.

△! NOTE
The streamsize option is only available when the Stream5 preprocessoris enabled.

Format

stream_size:<server|client|both|either>, <operator>, <number>;

Where the operator is one of the following:

• < - less than

• > - greater than

• = - equal

• != - not equal

• <= - less than or equal

• >= - greater than or equal

Example

For example, to look for a session that is less that 6 bytes from the client side, use:

alert tcp any any -> any any (stream_size:client,<,6;)

3.6.23 Non-Payload Detection Quick Reference

Table 3.11: Non-payload detection rule option keywords

Keyword Description
fragoffset The fragoffset keyword allows one to compare the IP fragmentoffset field against a decimal value.
ttl The ttl keyword is used to check the IP time-to-live value.
tos The tos keyword is used to check the IP TOS field for a specific value.

173

id The id keyword is used to check the IP ID field for a specific value.
ipopts The ipopts keyword is used to check if a specific IP option is present.
fragbits The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP header.
dsize The dsize keyword is used to test the packet payload size.
flags The flags keyword is used to check if specific TCP flag bits are present.
flow The flow keyword allows rules to only apply to certain directions of the traffic flow.
flowbits The flowbits keyword allows rules to track states during a transport protocol session.
seq The seq keyword is used to check for a specific TCP sequence number.
ack The ack keyword is used to check for a specific TCP acknowledgenumber.
window The window keyword is used to check for a specific TCP window size.
itype The itype keyword is used to check for a specific ICMP type value.
icode The icode keyword is used to check for a specific ICMP code value.
icmp id The icmpid keyword is used to check for a specific ICMP ID value.
icmp seq The icmpseq keyword is used to check for a specific ICMP sequence value.
rpc The rpc keyword is used to check for a RPC application, version, and procedure numbers in SUNRPC

CALL requests.
ip proto The ip proto keyword allows checks against the IP protocol header.
sameip The sameip keyword allows rules to check if the source ip is the same as the destination IP.

3.7 Post-Detection Rule Options

3.7.1 logto

The logto keyword tells Snort to log all packets that triggerthis rule to a special output log file. This is especially handy for combining data from
things like NMAP activity, HTTP CGI scans, etc. It should be noted that this option does not work when Snort is in binary logging mode.

Format

logto:"filename";

3.7.2 session

The session keyword is built to extract user data from TCP Sessions. There are many cases where seeing what users are typing in telnet, rlogin, ftp,
or even web sessions is very useful.

There are three available argument keywords for the sessionrule option:printable , binary , or all .

Theprintable keyword only prints out data that the user would normally seeor be able to type. Thebinary keyword prints out data in a binary
format. Theall keyword substitutes non-printable characters with their hexadecimal equivalents.

Format

session:[printable|binary|all];

Example

The following example logs all printable strings in a telnetpacket.

log tcp any any <> any 23 (session:printable;)

Given an FTP data session on port 12345, this example logs thepayload bytes in binary form.

log tcp any any <> any 12345 (metadata:service ftp-data; ses sion:binary;)

174

Warnings

Using the session keyword can slow Snort down considerably,so it should not be used in heavy load situations. The sessionkeyword is best suited
for post-processing binary (pcap) log files.

The binary keyword does not log any protocol headers below the application layer, and Stream reassembly will cause duplicate data when the
reassembled packets are logged.

3.7.3 resp

The resp keyword enables an active response that kills the offending session. Resp can be used in both passive or inline modes. See 2.11.3 for
details.

3.7.4 react

The react keyword enables an active response that includes sending a web page or other content to the client and then closing the connection. React
can be used in both passive and inline modes. See 2.11.4 for details.

3.7.5 tag

The tag keyword allow rules to log more than just the single packet that triggered the rule. Once a rule is triggered, additional traffic involving the
source and/or destination host istagged. Tagged traffic is logged to allow analysis of response codesand post-attack traffic.taggedalerts will be
sent to the same output plugins as the original alert, but it is the responsibility of the output plugin to properly handlethese special alerts. Currently,
the database output plugin, described in Section 2.6.6, does not properly handletaggedalerts.

Format

tag:<type>, <count>, <metric>[, direction];

type

• session - Log packets in the session that set off the rule

• host - Log packets from the host that caused the tag to activate (uses [direction] modifier)

count

• <integer> - Count is specified as a number of units. Units are specified inthe<metric> field.

metric

• packets - Tag the host/session for<count> packets

• seconds - Tag the host/session for<count> seconds

• bytes - Tag the host/session for<count> bytes

direction - only relevant if host type is used.

• src - Tag packets containing the source IP address of the packet that generated the initial event.

• dst - Tag packets containing the destination IP address of the packet that generated the initial event.

Note that neither subsequent alerts nor event filters will prevent a tagged packet from being logged. Subsequent tagged alerts will cause the limit to
reset.

alert tcp any any <> 10.1.1.1 any (flowbits:isnotset,tagge d;
flowbits:set,tagged; tag:host,600,seconds,src;)

Also note that if you have a tag option in a rule that uses a metric other thanpackets , a tagged packet limit will be used to limit the number
of tagged packets regardless of whether theseconds or bytes count has been reached. The defaulttagged packet limit value is 256 and can
be modified by using a config option in your snort.conf file (seeSection 2.1.3 on how to use thetagged packet limit config option). You can
disable this packet limit for a particular rule by adding apackets metric to your tag option and setting its count to 0 (This can be done on a global
scale by setting thetagged packet limit option in snort.conf to 0). Doing this will ensure that packets are tagged for the full amount ofseconds
or bytes and will not be cut off by thetagged packet limit . (Note that thetagged packet limit was introduced to avoid DoS situations on
high bandwidth sensors for tag rules with a highseconds or bytes counts.)

alert tcp 10.1.1.4 any -> 10.1.1.1 any \
(content:"TAGMYPACKETS"; tag:host,0,packets,600,seco nds,src;)

175

Example

This example logs the first 10 seconds or thetagged packet limit (whichever comes first) of any telnet session.

alert tcp any any -> any 23 (flags:s,12; tag:session,10,sec onds;)

3.7.6 activates

Theactivates keyword allows the rule writer to specify a rule to add when a specific network event occurs. See Section 3.2.6 for more information.

Format

activates:1;

3.7.7 activatedby

Theactivated by keyword allows the rule writer to dynamically enable a rule when a specific activate rule is triggered. See Section 3.2.6 for more
information.

Format

activated_by:1;

3.7.8 count

Thecount keyword must be used in combination with theactivated by keyword. It allows the rule writer to specify how many packets to leave
the rule enabled for after it is activated. See Section 3.2.6for more information.

Format

activated_by:1; count:50;

3.7.9 replace

Thereplace keyword is a feature available in inline mode which will cause Snort to replace the prior matching content with the given string. Both
the new string and the content it is to replace must have the same length. You can have multiple replacements within a rule,one per content.

replace:"<string>";

3.7.10 detectionfilter

detectionfilter defines a rate which must be exceeded by a source or destination host before a rule can generate an event. detectionfilter has the
following format:

detection_filter: \
track <by_src|by_dst>, \
count <c>, seconds <s>;

Snort evaluates adetection filter as the last step of the detection phase, after evaluating allother rule options (regardless of the position of the
filter within the rule source). At most onedetection filter is permitted per rule.

Example - this rule will fire on every failed login attempt from 10.1.2.100 during one sampling period of 60 seconds, afterthe first 30 failed login
attempts:

drop tcp 10.1.2.100 any > 10.1.1.100 22 (\
msg:"SSH Brute Force Attempt";
flow:established,to_server; \
content:"SSH"; nocase; offset:0; depth:4; \
detection_filter:track by_src, count 30, seconds 60; \
sid:1000001; rev:1;)

176

Option Description
track
by src|by dst

Rate is tracked either by source IP address or destination IPaddress. This means
count is maintained for each unique source IP address or eachunique destination
IP address.

count c The maximum number of rule matches in s seconds allowed before the detection
filter limit to be exceeded. C must be nonzero.

seconds s Time period over which count is accrued. The value must be nonzero.

Since potentially many events will be generated, adetection filter would normally be used in conjunction with anevent filter to reduce the
number of logged events.

3.7.11 Post-Detection Quick Reference

Table 3.12: Post-detection rule option keywords

Keyword Description
logto The logto keyword tells Snort to log all packets that triggerthis rule to a special output log file.
session The session keyword is built to extract user data from TCP Sessions.
resp The resp keyword is used attempt to close sessions when an alert is triggered.
react This keyword implements an ability for users to react to traffic that matches a Snort rule by closing

connection and sending a notice.
tag The tag keyword allow rules to log more than just the single packet that triggered the rule.
activates This keyword allows the rule writer to specify a rule to add when a specific network event occurs.
activated by This keyword allows the rule writer to dynamically enable a rule when a specific activate rule is

triggered.
count This keyword must be used in combination with theactivated by keyword. It allows the rule writer

to specify how many packets to leave the rule enabled for after it is activated.
replace Replace the prior matching content with the given string of the same length. Available in inline mode

only.
detection filter Track by source or destination IP address and if the rule otherwise matches more than the configured

rate it will fire.

3.8 Rule Thresholds

△! NOTE
Rule thresholds are deprecated and will not be supported in afuture release. Usedetection filter s (3.7.10) within rules, or
event filter s (2.4.2) as standalone configurations instead.

threshold can be included as part of a rule, or you can use standalone thresholds that reference the generator and SID they are applied to. There is
no functional difference between adding a threshold to a rule, or using a standalone threshold applied to the same rule. There is a logical difference.
Some rules may only make sense with a threshold. These shouldincorporate the threshold into the rule. For instance, a rule for detecting a too many
login password attempts may require more than 5 attempts. This can be done using the ‘limit’ type of threshold. It makes sense that the threshold
feature is an integral part of this rule.

Format

threshold: \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <c>, seconds <s>;

Examples

This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold:type li mit, track \
by_src, count 1 , seconds 60; sid:1000852; rev:1;)

177

Option Description
type limit|threshold|both type limit alerts on the 1st m events during the time interval, then ignores events

for the rest of the time interval. Typethreshold alerts every m times we see
this event during the time interval. Typeboth alerts once per time interval after
seeing m occurrences of the event, then ignores any additional events during the
time interval.

track by src|by dst rate is tracked either by source IP address, or destination IP address. This means
count is maintained for each unique source IP addresses, or for each unique desti-
nation IP addresses. Ports or anything else are not tracked.

count c number of rule matching in s seconds that will causeevent filter limit to be
exceeded.c must be nonzero value.

seconds s time period over whichcount is accrued.s must be nonzero value.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold:type th reshold, \
track by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

This rule logs at most one event every 60 seconds if at least 10events on this SID are fired.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold:type bo th, track \
by_dst, count 10, seconds 60; sid:1000852; rev:1;)

3.9 Writing Good Rules

There are some general concepts to keep in mind when developing Snort rules to maximize efficiency and speed.

3.9.1 Content Matching

Snort groups rules by protocol (ip, tcp, udp, icmp), then by ports (ip and icmp use slightly differnet logic), then by those with content and those
without. For rules withcontent , a multi-pattern matcher is used to select rules that have a chance at matching based on a single content. Selecting
rules for evaluation via this ”fast” pattern matcher was found to increase performance, especially when applied to large rule groups like HTTP.
The longer and more unique acontent is, the less likely that rule and all of it’s rule options willbe evaluated unnecessarily - it’s safe to say there
is generally more ”good” traffic than ”bad”. Rules withoutcontent are always evaluated (relative to the protocol and port group in which they
reside), potentially putting a drag on performance. While some detection options, such aspcre andbyte test , perform detection in the payload
section of the packet, they are not used by the fast pattern matching engine. If at all possible, try and have at least onecontent (or uricontent)
rule option in your rule.

3.9.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, instead ofa specific exploit.

For example, look for a the vulnerable command with an argument that is too large, instead of shellcode that binds a shell.

By writing rules for the vulnerability, the rule is less vulnerable to evasion when an attacker changes the exploit slightly.

3.9.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper case letters. FTP is a good example. In FTP, to send the username, the client sends:

user username_here

A simple rule to look for FTP root login attempts could be:

178

alert tcp any any -> any any 21 (content:"user root";)

While it mayseemtrivial to write a rule that looks for the username root, a good rule will handle all of the odd things that the protocol might handle
when accepting the user command.

For example, each of the following are accepted by most FTP servers:

user root
user root
user root
user root
user<tab>root

To handle all of the cases that the FTP server might handle, the rule needs more smarts than a simple string match.

A good rule that looks for root login on ftp would be:

alert tcp any any -> any 21 (flow:to_server,established; \
content:"root"; pcre:"/user\s+root/i";)

There are a few important things to note in this rule:

• The rule has aflow option, verifying this is traffic going to the server on an established session.

• The rule has acontentoption, looking forroot, which is the longest, most unique string in the attack. Thisoption is added to allow the fast
pattern matcher to select this rule for evaluation only if the contentroot is found in the payload.

• The rule has apcreoption, looking for user, followed at least one space character (which includes tab), followed by root, ignoring case.

3.9.4 Optimizing Rules

The content matching portion of the detection engine has recursion to handle a few evasion cases. Rules that are not properly written can cause
Snort to waste time duplicating checks.

The way the recursion works now is if a pattern matches, and ifany of the detection options after that pattern fail, then look for the pattern again
after where it was found the previous time. Repeat until the pattern is not found again or the opt functions all succeed.

On first read, that may not sound like a smart idea, but it is needed. For example, take the following rule:

alert ip any any -> any any (content:"a"; content:"b"; withi n:1;)

This rule would look for “a”, immediately followed by “b”. Without recursion, the payload “aab” would fail, even though it is obvious that the
payload “aab” has “a” immediately followed by “b”, because the first ”a” is not immediately followed by “b”.

While recursion is important for detection, the recursion implementation is not very smart.

For example, the following rule options are not optimized:

content:"|13|"; dsize:1;

By looking at this rule snippit, it is obvious the rule looks for a packet with a single byte of 0x13. However, because of recursion, a packet with
1024 bytes of 0x13 could cause 1023 too many pattern match attempts and 1023 too many dsize checks. Why? The content 0x13 would be found
in the first byte, then the dsize option would fail, and because of recursion, the content 0x13 would be found again starting after where the previous
0x13 was found, once it is found, then check the dsize again, repeating until 0x13 is not found in the payload again.

Reordering the rule options so that discrete checks (such asdsize) are moved to the beginning of the rule speed up Snort.

The optimized rule snipping would be:

dsize:1; content:"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as the dsize check is the first option checked and dsize is a discrete check without recursion.

The following rule options are discrete and should generally be placed at the beginning of any rule:

• dsize

• flags

• flow

179

• fragbits

• icmp id

• icmp seq

• icode

• id

• ipopts

• ip proto

• itype

• seq

• session

• tos

• ttl

• ack

• window

• resp

• sameip

3.9.5 Testing Numerical Values

The rule optionsbyte testandbyte jumpwere written to support writing rules for protocols that have length encoded data. RPC was the protocol
that spawned the requirement for these two rule options, as RPC uses simple length based encoding for passing data.

In order to understandwhybyte test and bytejump are useful, let’s go through an exploit attempt againstthe sadmind service.

This is the payload of the exploit:

89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88
00 00 00 0a 00 00 00 01 00 00 00 01 00 00 00 20
40 28 3a 10 00 00 00 0a 4d 45 54 41 53 50 4c 4f @(:.....metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 40 28 3a 14 00 07 45 df@(:...e.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 04
7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 04
7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 11
00 00 00 1e 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f;metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00system..
00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f/../../../
2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 1e ../bin/sh.......
<snip>

Let’s break this up, describe each of the fields, and figure outhow to write a rule to catch this exploit.

There are a few things to note with RPC:

• Numbers are written as uint32s, taking four bytes. The number 26 would show up as 0x0000001a.

• Strings are written as a uint32 specifying the length of the string, the string, and then null bytes to pad the length of thestring to end on a 4
byte boundary. The string “bob” would show up as 0x00000003626f6200.

89 09 9c e2 - the request id, a random uint32, unique to each req uest
00 00 00 00 - rpc type (call = 0, response = 1)
00 00 00 02 - rpc version (2)
00 01 87 88 - rpc program (0x00018788 = 100232 = sadmind)
00 00 00 0a - rpc program version (0x0000000a = 10)
00 00 00 01 - rpc procedure (0x00000001 = 1)
00 00 00 01 - credential flavor (1 = auth_unix)
00 00 00 20 - length of auth_unix data (0x20 = 32

the next 32 bytes are the auth_unix data

180

40 28 3a 10 - unix timestamp (0x40283a10 = 1076378128 = feb 10 0 1:55:28 2004 gmt)
00 00 00 0a - length of the client machine name (0x0a = 10)
4d 45 54 41 53 50 4c 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)
00 00 00 00 - gid of requesting user (0)
00 00 00 00 - extra group ids (0)

00 00 00 00 - verifier flavor (0 = auth_null, aka none)
00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed to procedure 1 of sadmind.

However, we know the vulnerability is that sadmind trusts the uid coming from the client. sadmind runs any request where the client’s uid is 0 as
root. As such, we have decoded enough of the request to write our rule.

First, we need to make sure that our packet is an RPC call.

content:"|00 00 00 00|"; offset:4; depth:4;

Then, we need to make sure that our packet is a call to sadmind.

content:"|00 01 87 88|"; offset:12; depth:4;

Then, we need to make sure that our packet is a call to the procedure 1, the vulnerable procedure.

content:"|00 00 00 01|"; offset:16; depth:4;

Then, we need to make sure that our packet has authunix credentials.

content:"|00 00 00 01|"; offset:20; depth:4;

We don’t care about the hostname, but we want to skip over it and check a number value after the hostname. This is where bytetest is useful.
Starting at the length of the hostname, the data we have is:

00 00 00 0a 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump that many bytes forward, making sure to account for the padding that RPC requires on
strings. If we do that, we are now at:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

which happens to be the exact location of the uid, the value wewant to check.

In english, we want to read 4 bytes, 36 bytes from the beginning of the packet, and turn those 4 bytes into an integer and jumpthat many bytes
forward, aligning on the 4 byte boundary. To do that in a Snortrule, we use:

byte_jump:4,36,align;

then we want to look for the uid of 0.

content:"|00 00 00 00|"; within:4;

Now that we have all the detection capabilities for our rule,let’s put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01|"; offset:16; depth:4;
content:"|00 00 00 01|"; offset:20; depth:4;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

181

The 3rd and fourth string match are right next to each other, so we should combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a buffer overflow when reading the client’s hostname, instead of reading the length of the hostname and
jumping that many bytes forward, we would check the length ofthe hostname to make sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into the packet, turn it into a number, and then make sure it is not too large (let’s say bigger
than 200 bytes). In Snort, we do:

byte_test:4,>,200,36;

Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_test:4,>,200,36;

182

Chapter 4

Dynamic Modules

Preprocessors, detection capabilities, and rules can now be developed as dynamically loadable module to snort. When enabled via the–enable-
dynamicpluginconfigure option, the dynamic API presents a means for loading dynamic libraries and allowing the module to utilize certain functions
within the main snort code.

The remainder of this chapter will highlight the data structures and API functions used in developing preprocessors, detection engines, and rules as
a dynamic plugin to snort.

Beware: the definitions herein may be out of date; check the appropriate header files for the current definitions.

4.1 Data Structures

A number of data structures are central to the API. The definition of each is defined in the following sections.

4.1.1 DynamicPluginMeta

TheDynamicPluginMetastructure defines the type of dynamic module (preprocessor,rules, or detection engine), the version information, and path
to the shared library. A shared library can implement all three types, but typically is limited to a single functionalitysuch as a preprocessor. It is
defined insf dynamic meta.h as:

#define MAX_NAME_LEN 1024

#define TYPE_ENGINE 0x01
#define TYPE_DETECTION 0x02
#define TYPE_PREPROCESSOR 0x04

typedef struct _DynamicPluginMeta
{

int type;
int major;
int minor;
int build;
char uniqueName[MAX_NAME_LEN];
char *libraryPath;

} DynamicPluginMeta;

4.1.2 DynamicPreprocessorData

TheDynamicPreprocessorDatastructure defines the interface the preprocessor uses to interact with snort itself. This includes functions to register
the preprocessor’s configuration parsing, restart, exit, and processing functions. It includes function to log messages, errors, fatal errors, and
debugging info. It also includes information for setting alerts, handling Inline drops, access to the StreamAPI, and itprovides access to the
normalized http and alternate data buffers. This data structure should be initialized when the preprocessor shared library is loaded. It is defined in
sf dynamic preprocessor.h . Check the header file for the current definition.

183

4.1.3 DynamicEngineData

The DynamicEngineDatastructure defines the interface a detection engine uses to interact with snort itself. This includes functions for logging
messages, errors, fatal errors, and debugging info as well as a means to register and check flowbits. It also includes a location to store rule-stubs for
dynamic rules that are loaded, and it provides access to the normalized http and alternate data buffers. It is defined insf dynamic engine.h as:

typedef struct _DynamicEngineData
{

int version;
u_int8_t *altBuffer;
UriInfo *uriBuffers[MAX_URIINFOS];
RegisterRule ruleRegister;
RegisterBit flowbitRegister;
CheckFlowbit flowbitCheck;
DetectAsn1 asn1Detect;
LogMsgFunc logMsg;
LogMsgFunc errMsg;
LogMsgFunc fatalMsg;
char *dataDumpDirectory;

GetPreprocRuleOptFuncs getPreprocOptFuncs;

SetRuleData setRuleData;
GetRuleData getRuleData;

DebugMsgFunc debugMsg;
#ifdef HAVE_WCHAR_H

DebugWideMsgFunc debugWideMsg;
#endif

char **debugMsgFile;
int *debugMsgLine;

PCRECompileFunc pcreCompile;
PCREStudyFunc pcreStudy;
PCREExecFunc pcreExec;

} DynamicEngineData;

4.1.4 SFSnortPacket

TheSFSnortPacketstructure mirrors the snort Packet structure and provides access to all of the data contained in a given packet.

It and the data structures it incorporates are defined insf snort packet.h . Additional data structures may be defined to reference other protocol
fields. Check the header file for the current definitions.

4.1.5 Dynamic Rules

A dynamic rule should use any of the following data structures. The following structures are defined insf snort plugin api.h .

Rule

TheRulestructure defines the basic outline of a rule and contains thesame set of information that is seen in a text rule. That includes protocol, ad-
dress and port information and rule information (classification, generator and signature IDs, revision, priority, classification, and a list of references).
It also includes a list of rule options and an optional evaluation function.

#define RULE_MATCH 1
#define RULE_NOMATCH 0

typedef struct _Rule
{

IPInfo ip;
RuleInformation info;

RuleOption **options; /* NULL terminated array of RuleOpti on union */

ruleEvalFunc evalFunc;

184

char initialized; /* Rule Initialized, used internally */
u_int32_t numOptions; /* Rule option count, used internall y */
char noAlert; /* Flag with no alert, used internally */
void *ruleData; /* Hash table for dynamic data pointers */

} Rule;

The rule evaluation function is defined as

typedef int (*ruleEvalFunc)(void *);

where the parameter is a pointer to the SFSnortPacket structure.

RuleInformation

The RuleInformationstructure defines the meta data for a rule and includes generator ID, signature ID, revision, classification, priority, message
text, and a list of references.

typedef struct _RuleInformation
{

u_int32_t genID;
u_int32_t sigID;
u_int32_t revision;
char *classification; /* String format of classification n ame */
u_int32_t priority;
char *message;
RuleReference **references; /* NULL terminated array of re ferences */
RuleMetaData **meta; /* NULL terminated array of reference s */

} RuleInformation;

RuleReference

TheRuleReferencestructure defines a single rule reference, including the system name and rereference identifier.

typedef struct _RuleReference
{

char *systemName;
char *refIdentifier;

} RuleReference;

IPInfo

TheIPInfo structure defines the initial matching criteria for a rule and includes the protocol, src address and port, destination address and port, and
direction. Some of the standard strings and variables are predefined - any, HOMENET, HTTPSERVERS, HTTPPORTS, etc.

typedef struct _IPInfo
{

u_int8_t protocol;
char * src_addr;
char * src_port; /* 0 for non TCP/UDP */
char direction; /* non-zero is bi-directional */
char * dst_addr;
char * dst_port; /* 0 for non TCP/UDP */

} IPInfo;

#define ANY_NET "any"
#define HOME_NET "$HOME_NET"
#define EXTERNAL_NET "$EXTERNAL_NET"
#define ANY_PORT "any"
#define HTTP_SERVERS "$HTTP_SERVERS"
#define HTTP_PORTS "$HTTP_PORTS"
#define SMTP_SERVERS "$SMTP_SERVERS"

185

RuleOption

TheRuleOptionstructure defines a single rule option as an option type and a reference to the data specific to that option. Each option has aflags
field that contains specific flags for that option as well as a ”Not” flag. The ”Not” flag is used to negate the results of evaluating that option.

typedef enum DynamicOptionType {
OPTION_TYPE_PREPROCESSOR,
OPTION_TYPE_CONTENT,
OPTION_TYPE_PCRE,
OPTION_TYPE_FLOWBIT,
OPTION_TYPE_FLOWFLAGS,
OPTION_TYPE_ASN1,
OPTION_TYPE_CURSOR,
OPTION_TYPE_HDR_CHECK,
OPTION_TYPE_BYTE_TEST,
OPTION_TYPE_BYTE_JUMP,
OPTION_TYPE_BYTE_EXTRACT,
OPTION_TYPE_SET_CURSOR,
OPTION_TYPE_LOOP,
OPTION_TYPE_MAX

};

typedef struct _RuleOption
{

int optionType;
union
{

void *ptr;
ContentInfo *content;
CursorInfo *cursor;
PCREInfo *pcre;
FlowBitsInfo *flowBit;
ByteData *byte;
ByteExtract *byteExtract;
FlowFlags *flowFlags;
Asn1Context *asn1;
HdrOptCheck *hdrData;
LoopInfo *loop;
PreprocessorOption *preprocOpt;

} option_u;
} RuleOption;

#define NOT_FLAG 0x10000000

Some options also contain information that is initialized at run time, such as the compiled PCRE information, Boyer-Moore content information,
the integer ID for a flowbit, etc.

The option types and related structures are listed below.

• OptionType: Content & Structure:ContentInfo

The ContentInfostructure defines an option for a content search. It includesthe pattern, depth and offset, and flags (one of which must
specify the buffer – raw, URI or normalized – to search). Additional flags include nocase, relative, unicode, and a designation that this
content is to be used for snorts fast pattern evaluation. Themost unique content, that which distinguishes this rule as apossible match to a
packet, should be marked for fast pattern evaluation. In thedynamic detection engine provided with Snort, if noContentInfostructure in a
given rules uses that flag, the one with the longest content length will be used.

typedef struct _ContentInfo
{

u_int8_t *pattern;
u_int32_t depth;
int32_t offset;
u_int32_t flags; /* must include a CONTENT_BUF_X */
void *boyer_ptr;
u_int8_t *patternByteForm;
u_int32_t patternByteFormLength;
u_int32_t incrementLength;

} ContentInfo;

#define CONTENT_NOCASE 0x01
#define CONTENT_RELATIVE 0x02
#define CONTENT_UNICODE2BYTE 0x04

186

#define CONTENT_UNICODE4BYTE 0x08
#define CONTENT_FAST_PATTERN 0x10
#define CONTENT_END_BUFFER 0x20

#define CONTENT_BUF_NORMALIZED 0x100
#define CONTENT_BUF_RAW 0x200
#define CONTENT_BUF_URI 0x400

• OptionType: PCRE & Structure:PCREInfo

ThePCREInfostructure defines an option for a PCRE search. It includes thePCRE expression, pcreflags such as caseless, as defined in
PCRE.h, and flags to specify the buffer.

/*
pcre.h provides flags:

PCRE_CASELESS
PCRE_MULTILINE
PCRE_DOTALL
PCRE_EXTENDED
PCRE_ANCHORED
PCRE_DOLLAR_ENDONLY
PCRE_UNGREEDY
*/

typedef struct _PCREInfo
{

char *expr;
void *compiled_expr;
void *compiled_extra;
u_int32_t compile_flags;
u_int32_t flags; /* must include a CONTENT_BUF_X */

} PCREInfo;

• OptionType: Flowbit & Structure:FlowBitsInfo

TheFlowBitsInfostructure defines a flowbits option. It includes the name of the flowbit and the operation (set, unset, toggle, isset, isnotset).

#define FLOWBIT_SET 0x01
#define FLOWBIT_UNSET 0x02
#define FLOWBIT_TOGGLE 0x04
#define FLOWBIT_ISSET 0x08
#define FLOWBIT_ISNOTSET 0x10
#define FLOWBIT_RESET 0x20
#define FLOWBIT_NOALERT 0x40

typedef struct _FlowBitsInfo
{

char *flowBitsName;
u_int8_t operation;
u_int32_t id;
u_int32_t flags;

} FlowBitsInfo;

• OptionType: Flow Flags & Structure:FlowFlags

TheFlowFlagsstructure defines a flow option. It includes the flags, which specify the direction (fromserver, toserver), established session,
etc.

#define FLOW_ESTABLISHED 0x10
#define FLOW_IGNORE_REASSEMBLED 0x1000
#define FLOW_ONLY_REASSMBLED 0x2000
#define FLOW_FR_SERVER 0x40
#define FLOW_TO_CLIENT 0x40 /* Just for redundancy */
#define FLOW_TO_SERVER 0x80
#define FLOW_FR_CLIENT 0x80 /* Just for redundancy */

typedef struct _FlowFlags
{

u_int32_t flags;
} FlowFlags;

• OptionType: ASN.1 & Structure:Asn1Context

TheAsn1Contextstructure defines the information for an ASN1 option. It mirrors the ASN1 rule option and also includes a flags field.

#define ASN1_ABS_OFFSET 1

187

#define ASN1_REL_OFFSET 2

typedef struct _Asn1Context
{

int bs_overflow;
int double_overflow;
int print;
int length;
unsigned int max_length;
int offset;
int offset_type;
u_int32_t flags;

} Asn1Context;

• OptionType: Cursor Check & Structure:CursorInfo

TheCursorInfostructure defines an option for a cursor evaluation. The cursor is the current position within the evaluation buffer, as related
to content and PCRE searches, as well as byte tests and byte jumps. It includes an offset and flags that specify the buffer. This can be used
to verify there is sufficient data to continue evaluation, similar to the isdataat rule option.

typedef struct _CursorInfo
{

int32_t offset;
u_int32_t flags; /* specify one of CONTENT_BUF_X */

} CursorInfo;

• OptionType: Protocol Header & Structure:HdrOptCheck

The HdrOptCheckstructure defines an option to check a protocol header for a specific value. It includes the header field, the operation
(¡,¿,=,etc), a value, a mask to ignore that part of the headerfield, and flags.

#define IP_HDR_ID 0x0001 /* IP Header ID */
#define IP_HDR_PROTO 0x0002 /* IP Protocol */
#define IP_HDR_FRAGBITS 0x0003 /* Frag Flags set in IP Heade r */
#define IP_HDR_FRAGOFFSET 0x0004 /* Frag Offset set in IP He ader */
#define IP_HDR_OPTIONS 0x0005 /* IP Options -- is option xx i ncluded */
#define IP_HDR_TTL 0x0006 /* IP Time to live */
#define IP_HDR_TOS 0x0007 /* IP Type of Service */
#define IP_HDR_OPTCHECK_MASK 0x000f

#define TCP_HDR_ACK 0x0010 /* TCP Ack Value */
#define TCP_HDR_SEQ 0x0020 /* TCP Seq Value */
#define TCP_HDR_FLAGS 0x0030 /* Flags set in TCP Header */
#define TCP_HDR_OPTIONS 0x0040 /* TCP Options -- is option x x included */
#define TCP_HDR_WIN 0x0050 /* TCP Window */
#define TCP_HDR_OPTCHECK_MASK 0x00f0

#define ICMP_HDR_CODE 0x1000 /* ICMP Header Code */
#define ICMP_HDR_TYPE 0x2000 /* ICMP Header Type */
#define ICMP_HDR_ID 0x3000 /* ICMP ID for ICMP_ECHO/ICMP_E CHO_REPLY */
#define ICMP_HDR_SEQ 0x4000 /* ICMP ID for ICMP_ECHO/ICMP_ ECHO_REPLY */
#define ICMP_HDR_OPTCHECK_MASK 0xf000

typedef struct _HdrOptCheck
{

u_int16_t hdrField; /* Field to check */
u_int32_t op; /* Type of comparison */
u_int32_t value; /* Value to compare value against */
u_int32_t mask_value; /* bits of value to ignore */
u_int32_t flags;

} HdrOptCheck;

• OptionType: Byte Test & Structure:ByteData

TheByteDatastructure defines the information for both ByteTest and ByteJump operations. It includes the number of bytes, an operation
(for ByteTest, ¡,¿,=,etc), a value, an offset, multiplier,and flags. The flags must specify the buffer.

#define CHECK_EQ 0
#define CHECK_NEQ 1
#define CHECK_LT 2
#define CHECK_GT 3
#define CHECK_LTE 4
#define CHECK_GTE 5
#define CHECK_AND 6
#define CHECK_XOR 7
#define CHECK_ALL 8

188

#define CHECK_ATLEASTONE 9
#define CHECK_NONE 10

typedef struct _ByteData
{

u_int32_t bytes; /* Number of bytes to extract */
u_int32_t op; /* Type of byte comparison, for checkValue */
u_int32_t value; /* Value to compare value against, for chec kValue, or extracted value */
int32_t offset; /* Offset from cursor */
u_int32_t multiplier; /* Used for byte jump -- 32bits is MORE than enough */
u_int32_t flags; /* must include a CONTENT_BUF_X */

} ByteData;

• OptionType: Byte Jump & Structure:ByteData

SeeByte Testabove.

• OptionType: Set Cursor & Structure:CursorInfo

SeeCursor Checkabove.

• OptionType: Loop & Structures:LoopInfo,ByteExtract,DynamicElement

TheLoopInfostructure defines the information for a set of options that are to be evaluated repeatedly. The loop option acts like a FOR loop
and includes start, end, and increment values as well as the comparison operation for termination. It includes a cursor adjust that happens
through each iteration of the loop, a reference to a RuleInfostructure that defines the RuleOptions are to be evaluated through each iteration.
One of those options may be a ByteExtract.

typedef struct _LoopInfo
{

DynamicElement *start; /* Starting value of FOR loop (i=sta rt) */
DynamicElement *end; /* Ending value of FOR loop (i OP end) */
DynamicElement *increment; /* Increment value of FOR loop (i+= increment) */
u_int32_t op; /* Type of comparison for loop termination */
CursorInfo *cursorAdjust; /* How to move cursor each iterat ion of loop */
struct _Rule *subRule; /* Pointer to SubRule & options to eva luate within

* the loop */
u_int8_t initialized; /* Loop initialized properly (safeg uard) */
u_int32_t flags; /* can be used to negate loop results, speci fies * relative. */

} LoopInfo;

TheByteExtractstructure defines the information to use when extracting bytes for a DynamicElement used a in Loop evaltion. It includes
the number of bytes, an offset, multiplier, flags specifyingthe buffer, and a reference to the DynamicElement.

typedef struct _ByteExtract
{

u_int32_t bytes; /* Number of bytes to extract */
int32_t offset; /* Offset from cursor */
u_int32_t multiplier; /* Multiply value by this (similar to byte jump) */
u_int32_t flags; /* must include a CONTENT_BUF_X */
char *refId; /* To match up with a DynamicElement refId */
void *memoryLocation; /* Location to store the data extract ed */

} ByteExtract;

TheDynamicElementstructure is used to define the values for a looping evaluation. It includes whether the element is static (an integer) or
dynamic (extracted from a buffer in the packet) and the value. For a dynamic element, the value is filled by a related ByteExtract option that
is part of the loop.

#define DYNAMIC_TYPE_INT_STATIC 1
#define DYNAMIC_TYPE_INT_REF 2

typedef struct _DynamicElement
{

char dynamicType; /* type of this field - static or reference */
char *refId; /* reference ID (NULL if static) */
union
{

void *voidPtr; /* Holder */
int32_t staticInt; /* Value of static */
int32_t *dynamicInt; /* Pointer to value of dynamic */

} data;
} DynamicElement;

4.2 Required Functions

Each dynamic module must define a set of functions and data objects to work within this framework.

189

4.2.1 Preprocessors

Each dynamic preprocessor library must define the followingfunctions. These are defined in the filesf dynamic preproc lib.c . The metadata
and setup function for the preprocessor should be definedsf preproc info.h .

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int InitializePreprocessor(DynamicPreprocessorData *)

This function initializes the data structure for use by the preprocessor into a library global variable,dpd and invokes the setup function.

4.2.2 Detection Engine

Each dynamic detection engine library must define the following functions.

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int InitializeEngineLib(DynamicEngineData *)

This function initializes the data structure for use by the engine.

The sample code provided with Snort predefines those functions and defines the following APIs to be used by a dynamic rules library.

• int RegisterRules(Rule **)

This is the function to iterate through each rule in the list,initialize it to setup content searches, PCRE evalution data, and register flowbits.

• int DumpRules(char *,Rule **)

This is the function to iterate through each rule in the list and write a rule-stop to be used by snort to control the action of the rule (alert, log,
drop, etc).

• int ruleMatch(void *p, Rule *rule)

This is the function to evaluate a rule if the rule does not have its own Rule Evaluation Function. This uses the individualfunctions outlined
below for each of the rule options and handles repetitive content issues.

Each of the functions below returns RULEMATCH if the option matches based on the current criteria (cursor position, etc).

– int contentMatch(void *p, ContentInfo* content, uint8 t **cursor)

This function evaluates a single content for a given packet,checking for the existence of that content as delimited by ContentInfo and
cursor. Cursor position is updated and returned in *cursor.

With a text rule, the with option corresponds to depth, and the distance option corresponds to offset.

– int checkFlow(void *p, FlowFlags *flowflags)

This function evaluates the flow for a given packet.

– int extractValue(void *p, ByteExtract *byteExtract, uint8 t *cursor)

This function extracts the bytes from a given packet, as specified by ByteExtract and delimited by cursor. Value extracted is stored
in ByteExtract memoryLocation parameter.

– int processFlowbits(void *p, FlowBitsInfo *flowbits)

This function evaluates the flowbits for a given packet, as specified by FlowBitsInfo. It will interact with flowbits used by text-based
rules.

– int setCursor(void *p, CursorInfo *cursorInfo, uint8 t **cursor)

This function adjusts the cursor as delimited by CursorInfo. New cursor position is returned in *cursor. It handles bounds checking
for the specified buffer and returns RULENOMATCH if the cursor is moved out of bounds.

It is also used by contentMatch, byteJump, and pcreMatch to adjust the cursor position after a successful match.

– int checkCursor(void *p, CursorInfo *cursorInfo, uint8 t *cursor)

This function validates that the cursor is within bounds of the specified buffer.

– int checkValue(void *p, ByteData *byteData, uint32 t value, uint8 t *cursor)

This function compares thevalueto the value stored in ByteData.

– int byteTest(void *p, ByteData *byteData, uint8 t *cursor)

This is a wrapper for extractValue() followed by checkValue().

– int byteJump(void *p, ByteData *byteData, uint8 t **cursor)

This is a wrapper for extractValue() followed by setCursor().

– int pcreMatch(void *p, PCREInfo *pcre, uint8 t **cursor)

This function evaluates a single pcre for a given packet, checking for the existence of the expression as delimited by PCREInfo and
cursor. Cursor position is updated and returned in *cursor.

– int detectAsn1(void *p, Asn1Context *asn1, uint8 t *cursor)

This function evaluates an ASN.1 check for a given packet, asdelimited by Asn1Context and cursor.

190

– int checkHdrOpt(void *p, HdrOptCheck *optData)

This function evaluates the given packet’s protocol headers, as specified by HdrOptCheck.

– int loopEval(void *p, LoopInfo *loop, uint8 t **cursor)

This function iterates through the SubRule of LoopInfo, as delimited by LoopInfo and cursor. Cursor position is updatedand returned
in *cursor.

– int preprocOptionEval(void *p, PreprocessorOption *preprocOpt, u int8 t **cursor)

This function evaluates the preprocessor defined option, asspepcifed by PreprocessorOption. Cursor position is updated and returned
in *cursor.

– void setTempCursor(uint8 t **temp cursor, u int8 t **cursor)

This function is used to handled repetitive contents to saveoff a cursor position temporarily to be reset at later point.

– void revertTempCursor(uint8 t **temp cursor, u int8 t **cursor)

This function is used to revert to a previously saved temporary cursor position.

△! NOTEIf you decide to write you own rule evaluation function, patterns that occur more than once may result in false negatives.Take extra care
to handle this situation and search for the matched pattern again if subsequent rule options fail to match. This should bedone for both
content and PCRE options.

4.2.3 Rules

Each dynamic rules library must define the following functions. Examples are defined in the filesfnort dynamic detection lib.c . The metadata
and setup function for the preprocessor should be defined insfsnort dynamic detection lib.h .

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int EngineVersion(DynamicPluginMeta *)

This function defines the version requirements for the corresponding detection engine library.

• int DumpSkeletonRules()

This functions writes out the rule-stubs for rules that are loaded.

• int InitializeDetection()

This function registers each rule in the rules library. It should set up fast pattern-matcher content, register flowbits, etc.

The sample code provided with Snort predefines those functions and uses the following data within the dynamic rules library.

• Rule *rules[]

A NULL terminated list of Rule structures that this library defines.

4.3 Examples

This section provides a simple example of a dynamic preprocessor and a dynamic rule.

4.3.1 Preprocessor Example

The following is an example of a simple preprocessor. This preprocessor always alerts on a Packet if the TCP port matches the one configured.

This assumes the the filessf dynamicpreproc lib.c andsf dynamicpreproc lib.h are used.

This is the metadata for this preprocessor, defined insf preproc info.h.

#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define BUILD_VERSION 0
#define PREPROC_NAME "SF_Dynamic_Example_Preprocessor "

#define DYNAMIC_PREPROC_SETUP ExampleSetup
extern void ExampleSetup();

The remainder of the code is defined insppexample.cand is compiled together withsf dynamicpreproc lib.c into lib sfdynamicpreprocessorexample.so.

Define the Setup function to register the initialization function.

191

#define GENERATOR_EXAMPLE 256
extern DynamicPreprocessorData _dpd;

void ExampleInit(unsigned char *);
void ExampleProcess(void *, void *);

void ExampleSetup()
{

_dpd.registerPreproc("dynamic_example", ExampleInit) ;

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is setup\n"););
}

The initialization function to parse the keywords fromsnort.conf .

u_int16_t portToCheck;

void ExampleInit(unsigned char *args)
{

char *arg;
char *argEnd;
unsigned long port;

_dpd.logMsg("Example dynamic preprocessor configuratio n\n");

arg = strtok(args, " \t\n\r");

if(!strcasecmp("port", arg))
{

arg = strtok(NULL, "\t\n\r");
if (!arg)
{

_dpd.fatalMsg("ExamplePreproc: Missing port\n");
}

port = strtoul(arg, &argEnd, 10);
if (port < 0 || port > 65535)
{

_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port);
}
portToCheck = port;

_dpd.logMsg(" Port: %d\n", portToCheck);
}
else
{

_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", ar g);
}

/* Register the preprocessor function, Transport layer, ID 10000 */
_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 1 0000);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is initialized\n"););
}

The function to process the packet and log an alert if the either port matches.

#define SRC_PORT_MATCH 1
#define SRC_PORT_MATCH_STR "example_preprocessor: src p ort match"
#define DST_PORT_MATCH 2
#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"
void ExampleProcess(void *pkt, void *context)
{

SFSnortPacket *p = (SFSnortPacket *)pkt;
if (!p->ip4_header || p->ip4_header->proto != IPPROTO_TC P || !p->tcp_header)
{

/* Not for me, return */
return;

}

192

if (p->src_port == portToCheck)
{

/* Source port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,

1, 0, 3, SRC_PORT_MATCH_STR, 0);
return;

}

if (p->dst_port == portToCheck)
{

/* Destination port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,

1, 0, 3, DST_PORT_MATCH_STR, 0);
return;

}
}

4.3.2 Rules

The following is an example of a simple rule, take from the current rule set, SID 109. It is implemented to work with the detection engine provided
with snort.

The snort rule in normal format:

alert tcp $HOME_NET 12345:12346 -> $EXTERNAL_NET any \
(msg:"BACKDOOR netbus active"; flow:from_server,establ ished; \
content:"NetBus"; reference:arachnids,401; classtype: misc-activity; \
sid:109; rev:5;)

This is the metadata for this rule library, defined indetectionlib meta.h.

/* Version for this rule library */
#define DETECTION_LIB_MAJOR_VERSION 1
#define DETECTION_LIB_MINOR_VERSION 0
#define DETECTION_LIB_BUILD_VERSION 1
#define DETECTION_LIB_NAME "Snort_Dynamic_Rule_Exampl e"

/* Required version and name of the engine */
#define REQ_ENGINE_LIB_MAJOR_VERSION 1
#define REQ_ENGINE_LIB_MINOR_VERSION 0
#define REQ_ENGINE_LIB_NAME "SF_SNORT_DETECTION_ENGINE"

The definition of each data structure for this rule is insid109.c.

Declaration of the data structures.

• Flow option

Define theFlowFlagsstructure and its correspondingRuleOption. Per the text version, flow is fromserver,established.

static FlowFlags sid109flow =
{

FLOW_ESTABLISHED|FLOW_TO_CLIENT
};

static RuleOption sid109option1 =
{

OPTION_TYPE_FLOWFLAGS,
{

&sid109flow
}

};

• Content Option

Define theContentInfostructure and its correspondingRuleOption. Per the text version, content is ”NetBus”, no depth or offset, case
sensitive, and non-relative. Search on the normalized buffer by default.NOTE: This content will be used for the fast pattern matcher since
it is the longest content option for this rule and no contentshave a flag ofCONTENTFASTPATTERN.

193

static ContentInfo sid109content =
{

"NetBus", /* pattern to search for */
0, /* depth */
0, /* offset */
CONTENT_BUF_NORMALIZED, /* flags */
NULL, /* holder for boyer/moore info */
NULL, /* holder for byte representation of "NetBus" */
0, /* holder for length of byte representation */
0 /* holder for increment length */

};

static RuleOption sid109option2 =
{

OPTION_TYPE_CONTENT,
{

&sid109content
}

};

• Rule and Meta Data

Define the references.

static RuleReference sid109ref_arachnids =
{

"arachnids", /* Type */
"401" /* value */

};

static RuleReference *sid109refs[] =
{

&sid109ref_arachnids,
NULL

};

The list of rule options. Rule options are evaluated in the order specified.

RuleOption *sid109options[] =
{

&sid109option1,
&sid109option2,
NULL

};

The rule itself, with the protocol header, meta data (sid, classification, message, etc).

Rule sid109 =
{

/* protocol header, akin to => tcp any any -> any any */
{

IPPROTO_TCP, /* proto */
HOME_NET, /* source IP */
"12345:12346", /* source port(s) */
0, /* Direction */
EXTERNAL_NET, /* destination IP */
ANY_PORT, /* destination port */

},
/* metadata */
{

3, /* genid -- use 3 to distinguish a C rule */
109, /* sigid */
5, /* revision */
"misc-activity", /* classification */
0, /* priority */
"BACKDOOR netbus active", /* message */
sid109refs /* ptr to references */

},
sid109options, /* ptr to rule options */
NULL, /* Use internal eval func */
0, /* Holder, not yet initialized, used internally */
0, /* Holder, option count, used internally */
0, /* Holder, no alert, used internally for flowbits */
NULL /* Holder, rule data, used internally */

194

• The List of rules defined by this rules library

The NULL terminated list of rules. The InitializeDetectioniterates through each Rule in the list and initializes the content, flowbits, pcre,
etc.

extern Rule sid109;
extern Rule sid637;

Rule *rules[] =
{

&sid109,
&sid637,
NULL

};

195

Chapter 5

Snort Development

Currently, this chapter is here as a place holder. It will someday contain references on how to create new detection plugins and preprocessors. End
users don’t really need to be reading this section. This is intended to help developers get a basic understanding of whatsgoing on quickly.

If you are going to be helping out with Snort development, please use theHEAD branch of cvs. We’ve had problems in the past of people submitting
patches only to the stable branch (since they are likely writing this stuff for their own IDS purposes). Bug fixes are what goes intoSTABLE. Features
go into HEAD.

5.1 Submitting Patches

Patches to Snort should be sent to thesnort-devel@lists.sourceforge.net mailing list. Patches should done with the commanddiff -nu snort-orig snort-new .

5.2 Snort Data Flow

First, traffic is acquired from the network link via libpcap.Packets are passed through a series of decoder routines thatfirst fill out the packet
structure for link level protocols then are further decodedfor things like TCP and UDP ports.

Packets are then sent through the registered set of preprocessors. Each preprocessor checks to see if this packet is something it should look at.

Packets are then sent through the detection engine. The detection engine checks each packet against the various optionslisted in the Snort config
files. Each of the keyword options is a plugin. This allows this to be easily extensible.

5.2.1 Preprocessors

For example, a TCP analysis preprocessor could simply return if the packet does not have a TCP header. It can do this by checking:

if (p->tcph==null)
return;

Similarly, there are a lot of packetflags available that can be used to mark a packet as “reassembled” or logged. Check out src/decode.h for the list
of pkt * constants.

5.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it to a new item and change a few things. Later, we’ll document what these few things are.

5.2.3 Output Plugins

Generally, new output plugins should go into the barnyard project rather than the Snort project. We are currently cleaning house on the available
output options.

196

5.3 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Steve Sturges
Bhagyashree Bantwal
Hui Cao
Russ Combs
Ryan Jordan

Snort Rules Team Matt Watchinski
Sojeong Hong
Nigel Houghton
Richard Johnson
Alex Kambis
Alex Kirk
Chris Marshall
Kevin Miklavcic
Patrick Mullen
Matt Olney
Ryan Pentney
Alain Zidoemba

Win32 Maintainer Snort Team

Major Contributors Erek Adams
Andrew Baker
Scott Campbell
Brian Caswell
Dilbagh Chahal
Roman D.
Michael Davis
Chris Green
Lurene Grenier
Jed Haile
Jeremy Hewlett
Victor Julien
Glenn Mansfield Keeni
Adam Keeton
Chad Kreimendahl
Kevin Liu
Rob McMillen
William Metcalf
Andrew Mullican
Jeff Nathan
Marc Norton
Judy Novak
Andreas Ostling
Chris Reid
Daniel Roelker
Dragos Ruiu
JP Vossen
Todd Wease
Daniel Wittenberg
Phil Wood
Fyodor Yarochkin

197

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/phrack49/p49-06

[2] http://www.nmap.org

[3] http://public.pacbell.net/dedicated/cidr.html

[4] http://www.whitehats.com

[5] http://www.incident.org/snortdb

[6] http://www.pcre.org

198

