
Oracle Berkeley DB

Getting Started with
the

SQL APIs

11g Release 2
(Library Version 11.2.5.1)

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:

Published 8/27/2010

8/27/2010 Getting Started with the BDB SQL APIs Page iii

Table of Contents
Preface ... v

Conventions Used in this Book .. v
For More Information ... v

Contact Us ... vi
1. Berkeley DB SQL: The Absolute Basics .. 1

BDB SQL Is Nearly Identical to SQLite ... 1
Getting and Installing BDB SQL .. 1

On Windows Systems ... 1
On Unix ... 2

The Journal Directory ... 2
Unsupported PRAGMAs .. 2
Changed PRAGMAs ... 3

PRAGMA journal_size_limit .. 3
PRAGMA max_page_count ... 3

Added PRAGMAs .. 3
PRAGMA TXN_BULK ... 3

Miscellaneous Differences .. 4
Berkeley DB Concepts ... 5
Encryption ... 5

2. Locking Notes ... 7
Internal Database Usage .. 7
Lock Handling .. 8

SQLite Lock Usage .. 8
Lock Usage with the DB SQL Interface .. 9

3. Configuring the Berkeley DB SQL interface ... 11
Introduction to Environments .. 11
The DB_CONFIG File ... 11

Creating the DB_CONFIG File Before Environment Creation 12
Re-creating the Environment .. 12

Configuring the Database Page Size ... 12
Selecting the Page Size ... 13

Selecting the Database File Size .. 13
Configuring the In-Memory Cache ... 13
Administering Log Files ... 14

Setting the Log File Size ... 14
Configuring the Logging Region Size .. 15
Setting the In-Memory Log Buffer Size ... 15

Managing the Locking Subsystem .. 16
4. Administrating Berkeley DB SQL Databases ... 18

Backing Up Berkeley DB SQL Databases .. 18
Offline Backups .. 18
Hot Backup ... 18
Incremental Backups .. 19
About Unix Copy Utilities .. 20

Recovering from a Backup .. 20
Catastrophic Recovery .. 21

8/27/2010 Getting Started with the BDB SQL APIs Page iv

Syncing with Oracle Databases .. 21
Syncing on Unix Platforms ... 21
Syncing on Windows Platforms .. 22
Syncing on Windows Mobile Platforms ... 22

Data Migration .. 22
Migration Using the Shells .. 23
Supported Data and Schema ... 23

Replicating Berkeley DB SQL Databases .. 24
Preparing to use Replication with the Berkeley DB SQL API 24
Using Replication with the Berkeley DB SQL API 25

8/27/2010 Getting Started with the BDB SQL APIs Page v

Preface
Welcome to the Berkeley DB SQL interface. This manual describes how to configure and
use the SQL interface to Berkeley DB 11g Release 2. This manual also describes common
administrative tasks, such as backup and restore, database dump and load, and data migration
when using the BDB SQL interface.

This manual is intended for anyone who wants to use the BDB SQL interface. Because usage of
the BDB SQL interface is very nearly identical to SQLite, prior knowledge of SQLite is assumed
by this manual. No prior knowledge of Berkeley DB is necessary, but it is helpful.

To learn about SQLite, see the official SQLite website at: http://www.sqlite.org

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Keywords or literal text that you are expected to type is presented in a monospaced font.
For example: "Use the DB_HOME environment variable to identify the location of your
environment directory."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples and literal text that you might type are displayed in a monospaced font on
a shaded background. For example:

/* File: gettingstarted_common.h */
typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */

 char *db_home_dir; /* Directory containing the database files */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

Note

Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when using
the Berkeley DB SQL interface:

• Berkeley DB Installation and Build Guide

• Berkeley DB Programmer's Reference Guide

http://www.sqlite.org/
http://download.oracle.com/docs/cd/E17076_02/html/installation/BDB_Installation.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf

8/27/2010 Getting Started with the BDB SQL APIs Page vi

To download the latest documentation along with white papers and other collateral, visit
http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle downloads, visit http://www.oracle.com/technetwork/
database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumID=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

8/27/2010 Getting Started with the BDB SQL APIs Page 1

Chapter 1. Berkeley DB SQL: The Absolute Basics
Welcome to the Berkeley DB SQL interface. If you are a SQLite user who is using the BDB
SQL interface for reasons other than performance enhancements, this chapter tells you the
minimum things you need to know about the interface. You should simply read this chapter
and then skip the rest of this book.

If, however, you are using the BDB SQL interface for performance reasons, then you need
to read this chapter, plus most of the rest of the chapters in this book (although you can
probably skip most of Administrating Berkeley DB SQL Databases (page 18), unless you want
to administer your database "the Berkeley DB way").

Also, if you are an existing Berkeley DB user who is interested in the BDB SQL interface, read
this chapter plus the rest of this book.

BDB SQL Is Nearly Identical to SQLite

Your interaction with the BDB SQL interface is almost identical to SQLite. You use the same
APIs, the same command shell environment, the same SQL statements, and the same PRAGMAs
to work with the database created by the BDB SQL interface as you would if you were using
SQLite.

To learn how to use SQLite, see the official SQLite Documentation Page.

That said, there are a few small differences between the two interfaces. These are described
in the remainder of this chapter.

Getting and Installing BDB SQL

The BDB SQL interface comes as a part of the Oracle Berkeley DB download. This can be
downloaded from the Oracle Berkeley DB download page.

How you install the BDB SQL interface differs depending on whether you are using a Unix or a
Windows system.

On Windows Systems

The BDB SQL interface is automatically built and installed whenever you build or install
Berkeley DB for a Windows system. The BDB SQL interface dlls and the command line
interpreter have names that differ from a standard SQLite distribution as follows:

• dbsql.exe

This is the command line shell. It operates identically to the SQLite sqlite3.exe shell.

• libdb_sql50.dll

This is the library that provides the BDB SQL interface. It is the equivalent of the SQLite
sqlite3.dll library.

http://www.sqlite.org/docs.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Berkeley DB SQL: The Absolute Basics

8/27/2010 Getting Started with the BDB SQL APIs Page 2

On Unix

In order to build the BDB SQL interface, you download and build Berkeley DB, configuring it
so that the BDB SQL interface is also built. Be aware that it is not built by default. Instead,
you need to tell the Berkeley DB configure script to also build the BDB SQL interface. For
instructions on building the BDB SQL interface, see Building the DB SQL Interface in the
Berkeley DB Installation and Build Guide.

The library and application names used when building the BDB SQL interface are different
than those used by SQLite. If you want library and command shell names that are consistent
with the names used by SQLite, configure the BDB SQL interface build using the compatibility
(--enable-sql_compat) option.

Warning

The compatibility option can break other applications on your platform that rely on
standard SQLite. This is especially true of Mac OS X, which uses standard SQLite for a
number of default applications.

Use the compatibility option only if you know exactly what you are doing.

Unless you built the BDB SQL interface with the compatibility option, libraries and a command
line shell are built with the following names:

• dbsql

This is the command line shell. It operates identically to the SQLite sqlite3 shell.

• libdb_sql

This is the library that provides the BDB SQL interface. It is the equivalent of the SQLite
libsqlite3 library.

The Journal Directory

When you create a database using the BDB SQL interface, a directory is created alongside of
it. This directory has the same name as your database file, but with a -journal suffix.

That is, if you create a database called "mydb" then the BDB SQL interface also creates a
directory alongside of the "mydb" file called "mydb-journal".

This directory contains files that are very important for the proper functioning of the BDB SQL
interface. Do not delete this directory or any of its files unless you know what you are doing.

For more information on the journal directory, see Introduction to Environments (page 11).

Unsupported PRAGMAs

The following PRAGMAs are not supported by the BDB SQL interface.

../installation/build_unix.html#build_unix_sqlinter
../api_reference/C/dbsql.html

Berkeley DB SQL: The Absolute Basics

8/27/2010 Getting Started with the BDB SQL APIs Page 3

PRAGMA journal_mode
PRAGMA legacy_file_format

Also, PRAGMA fullfsync is always on for the BDB SQL interface. (This is an issue only for Mac OS
X platforms.)

Changed PRAGMAs

The following PRAGMAs are available in the BDB SQL interface, but they behave differently in
some way.

PRAGMA journal_size_limit

For standard SQLite, this pragma identifies the maximum size that the journal file is allowed
to be.

Berkeley DB does not have a journal file, but it does write and use log files. Over the course
of the database's lifetime, Berkeley DB will probably create multiple log files. A new log file is
created when the current log file has reached the defined maximum size for a log file.

You use PRAGMA journal_size_limit to define this maximum size for a log file.

For more information, see Setting the Log File Size (page 14).

PRAGMA max_page_count

For standard SQLite, this identifies the maximum number of pages allowed in the database.
For the BDB SQL interface, this identifies the maximum size (in bytes) that the database file is
allowed to be.

For both interfaces, this pragma performs essentially the same function, but you express the
upper bound in a slightly different way depending on which interface you are using.

For more information, see Configuring the Database Page Size (page 12).

Added PRAGMAs

The following PRAGMAs are added in the Berkeley DB SQL interface.

PRAGMA TXN_BULK

PRAGMA TXN_BULK = 0 | 1;

Enables transactional bulk loading optimization. The default setting for TXN_BULK is 0. This
means the PRAGMA is turned off. When TXN_BULK is set to 1 in the SQL source, it causes the
application to enter a mode in which:

• transactional bulk loading optimization is enabled for top-level transactions

• nested per-statement transactions are not used

http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_legacy_file_format
http://www.sqlite.org/pragma.html#pragma_fullfsync

Berkeley DB SQL: The Absolute Basics

8/27/2010 Getting Started with the BDB SQL APIs Page 4

PRAGMA TXN_BULK enables two optimizations. The transactional bulk loading optimization
uses the DB_TXN_BULK flag when starting transactions. Note that there are implications of
using the DB_TXN_BULK flag, particularly with regard to its interaction with hot backup. The
other optimization omits nested subtransactions for each statement. When this optimization
is enabled, you can not undo any single statement. If any statement must be undone, then
the entire encompassing transaction must be aborted. This is a compromise, trading speed of
bulk inserts against the standard statement undo guarantees. With these two optimizations,
a transaction that inserts a large number of new records can run with much less I/O and
transaction management overhead.

Miscellaneous Differences

The following miscellaneous differences also exist between the BDB SQL interface and SQLite:

• The BDB SQL interface does not support the IMMEDIATE keyword (BEGIN IMMEDIATE
behaves just like BEGIN).

• There are differences in how the two products work in a concurrent application that will
cause the BDB SQL interface to deadlock where SQLite would result in a different error. This
is because the products use different locking paradigms. See Locking Notes (page 7) for
more information.

• The BDB SQL does not call the busy callback when a session attempts to operate the
same database page that another session has locked. It blocks instead. That is to say, the
functions sqlite3_busy_handler and sqlite3_busy_timeout are not effective in BDB
SQL.

• The BDB SQL does not support two phase commit across databases. Attaching to multiple
databases can lead to inconsistency after recovery and undetected deadlocks when
accessing multiple databases from concurrent transactions in different order. Hence,
applications must ensure that they access databases in the same order in any transaction
that spans multiple databases. Else, a deadlock can occur that causes threads to block, and
the deadlock will not be detected by Berkeley DB.

• In BDB SQL, when two sessions accessing the same database perform conflicting operations
on the same page, one session will be blocked until the conflicting operations are resolved.
For example,

Session 1:

dbsql> insert into a values (4);
dbsql> begin;
dbsql> insert into a values (5);

Session 2:

dbsql> select * from a;

What happens here is that Session 2 is blocked until Session 1 commits the transaction.

Session 1:

../api_reference/C/txnbegin.html#txnbegin_DB_TXN_BULK
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_BULK

Berkeley DB SQL: The Absolute Basics

8/27/2010 Getting Started with the BDB SQL APIs Page 5

dbsql> commit;

Session 2:

dbsql> select * from a;
4
5

Under such situations in SQLite, operations poll instead of blocking, and a callback is used
to determine whether to continue polling.

• By default, you always only have a single database file when you use BDB SQL interface
SQL, just as you do when you use SQLite. However, you can configure BDB SQL interface
at compile time to create one BDB SQL interface database file for each SQL table that you
create. How to perform this configuration is described in the Berkeley DB Installation and
Build Guide.

Berkeley DB Concepts

If you are a SQLite user who is migrating to the BDB SQL interface, then there are a few
Berkeley DB-specific concepts you might want to know about.

• Environments. The directory that is created alongside your database file, and which ends
with the "-journal" suffix, is actually a Berkeley DB environment directory. This might be
interesting to you in some administrative situations. For some minimal information on what
an environment is, see Introduction to Environments (page 11).

• The Locking Subsystem

You can configure the maximum number of locks that can be in use at any given time when
you use the BDB SQL interface. This is probably only interesting to you if you are using
the BDB SQL interface in a concurrent application that is running a very large number of
transactions.

For information on configuring your locking subsystem, see Managing the Locking
Subsystem (page 16).

• The Logging Subsystem

The BDB SQL interface maintains log files in its journal directory, and you can manage
various aspects of these. For the overwhelming majority of applications, there is no need to
manage this. But for the sake of completeness, this topic is described in this manual.

For more information, see Administering Log Files (page 14).

Encryption

The Berkeley DB SQL interface supports the SQLite Encryption Extension (SEE) to ensure
security of your data. The supported encryption algorithm is AES-128 in CBC mode. For more
information on the concepts relating to BDB encryption, see the Programmer's Reference
Guide.

../programmer_reference/env_encrypt.html
../programmer_reference/env_encrypt.html

Berkeley DB SQL: The Absolute Basics

8/27/2010 Getting Started with the BDB SQL APIs Page 6

To learn how to use the SQLite Encryption Extension (SEE), see the official SQLite
Documentation Page.

Note
The Berkeley DB SQL interface does not support the sqlite3_rekey method.

http://www.hwaci.com/sw/sqlite/see.html
http://www.hwaci.com/sw/sqlite/see.html

8/27/2010 Getting Started with the BDB SQL APIs Page 7

Chapter 2. Locking Notes
There are some important performance differences between the BDB SQL interface and
SQLite, especially in a concurrent environment. This chapter gives you enough information
about how the BDB SQL interface uses its database, as opposed to how SQLite uses its
database, in order for you to understand the difference between the two interfaces. It then
gives you some advice on how to best approach working with the BDB SQL interface in a multi-
threaded environment.

If you are an existing user of SQLite, and you care about improving your application
performance when using the BDB SQL interface in a concurrent situation, you should read
this chapter. Existing users of Berkeley DB may also find some interesting information in this
chapter, although it is mostly geared towards SQLite users.

Internal Database Usage

The BDB SQL interface and SQLite do different things when it comes to locking data in their
databases. In order to provide ACID transactions, both products must prevent concurrent
access during write operations. Further, both products prevent concurrent access by obtaining
software level locks that allow only the current holder of the lock to perform write access to
the locked data.

The difference between the two is that when SQLite requires a lock (such as when a
transaction is underway), it locks the entire database and all tables. (This is known as
database level locking.) The BDB SQL interface, on the other hand, only locks the portion
of the table being operated on within the current transactional context (this is known as
page level locking). In most situations, this allows applications using the BDB SQL interface
to operate concurrently and so have better read/write throughput than applications using
SQLite. This is because there is less lock contention.

By default, one Berkeley DB logical database is created within the single database file
for every SQL table that you create. Within each such logical database, each table row is
represented as a Berkeley DB key/data pair.

This is important because the BDB SQL interface uses Berkeley DB's Transaction Data Store
product. This means that Berkeley DB does not have to lock an entire database (all the tables
within a database file) when it acquires a lock. Instead, it locks a single Berkeley DB database
page (which usually contains a small sub-set of rows within a single table).

The size of database pages will differ from platform to platform (you can also manually
configure this), but usually a database page can hold multiple key/data pairs; that is, multiple
rows from a SQL table. Exactly how many table rows fit on a database page depends on the
size of your page and the size of your table rows.

If you have an exceptionally small table, it is possible for the entire table to fit on a single
database page. In this case, Berkeley DB is in essence forced to serialize access to the entire
table when it requires a lock for it.

Note, however, that the case of a single table fitting on a single database page is very rare,
and it in fact represents the abnormal case. Normally tables span multiple pages and so

Locking Notes

8/27/2010 Getting Started with the BDB SQL APIs Page 8

Berkeley DB will lock only portions of your tables. This locking behavior is automatic and
transparent to your application.

Lock Handling

There is a difference in how applications written for the BDB SQL interface handle deadlocks
as opposed to how deadlocks are handled for SQLite applications. For the SQLite developer,
the following information is a necessary review in order to understand how the BDB SQL
interface behaves differently.

From a usage point of view, the BDB SQL interface behaves in the same way as SQLite in
shared cache mode. The implications of this are explained below.

SQLite Lock Usage

As mentioned previously in this chapter, SQLite locks the entire database while performing a
transaction. It also has a locking model that is different from the BDB SQL interface, one that
supports multiple readers, but only a single writer. In SQLite, transactions can start as follows:

• BEGIN

Begins the transaction, locking the entire database for reading. Use this if you only want to
read from the database.

• BEGIN IMMEDIATE

Begins the transaction, acquiring a "modify" lock. This is also known as a RESERVED lock.
Use this if you are modifying the database (that is, performing INSERT, UPDATE, or DELETE).
RESERVED locks and read locks can co-exist.

• BEGIN EXCLUSIVE

Begins the transaction, acquiring a write lock. Transactions begun this way will be written
to the disk upon commit. No other lock can co-exist with an exclusive lock.

The last two statements are a kind of a contract. If you can get them to complete (that is, not
return SQLITE_LOCKED), then you can start modifying the database (that is, change data in
the in-memory cache), and you will eventually be able to commit (write) your modifications to
the database.

In order to avoid deadlocks in SQLite, programmers who want to modify a SQLite database
start the transaction with BEGIN IMMEDIATE. If the transaction cannot acquire the necessary
locks, it will fail, returning SQLITE_BUSY. At that point, the transaction falls back to an
unlocked state whereby it holds no locks against the database. This means that any existing
transactions in a RESERVED state can safely wait for the necessary EXCLUSIVE lock in order to
finally write their modifications from the in-memory cache to the on-disk database.

The important point here is that so long as the programmer uses these locks correctly, he can
assume that he can proceed with his work without encountering a deadlock. (Assuming that all
database readers and writers are also using these locks correctly.)

Locking Notes

8/27/2010 Getting Started with the BDB SQL APIs Page 9

Lock Usage with the DB SQL Interface

When you use the BDB SQL interface, you can begin your transaction with BEGIN or BEGIN
EXCLUSIVE.

Note that the IMMEDIATE keyword is ignored in the BDB SQL interface (BEGIN IMMEDIATE
behaves like BEGIN).

When you begin your transaction with BEGIN, Berkeley DB decides what kind of a lock you
need based on what you are doing to the database. If you perform an action that is read-only,
it acquires a read lock. If you perform a write action, it acquires a write lock.

Also, the BDB SQL interface supports multiple readers and multiple writers. This means that
multiple transactions can acquire locks as long as they are not trying to modify the same page.
For example:

Session 1:

dbsql> create table a(x int);
dbsql> begin;
dbsql> insert into a values (1);
dbsql> commit;

Session 2:

dbsql> create table b(x int);
dbsql> begin;
dbsql> insert into b values (1);
dbsql> commit;

Because these two sessions are operating on different pages in the Berkeley DB cache, this
example will work. If you tried this with SQLite, you could not start the second transaction
until the first had completed.

However, if you do this using the BDB SQL interface:

Session 1:

dbsql> begin;
dbsql> insert into a values (2);

Session 2:

dbsql> begin;
dbsql> insert into a values (2);

The second session blocks until the first session commits the transaction. Again, this
is because both sessions are operating on the same database page(s). However, if you
simultaneously attempt to write pages in reverse order, you can deadlock. For example:

Session 1:

dbsql> begin;

Locking Notes

8/27/2010 Getting Started with the BDB SQL APIs Page 10

dbsql> insert into a values (3);
dbsql> insert into b values (3);

Session 2:

dbsql> begin;
dbsql> insert into b values (3);
dbsql> insert into a values (3);
Error: database table is locked

What happens here is that Session 1 is blocked waiting for a lock on table b, while Session 2 is
blocked waiting for a lock on table a. The application can make no forward progress, and so it
is deadlocked.

When such a deadlock is detected one session loses the lock it got when executing its last
statement, and that statement is automatically rolled back. The rest of the statements in the
session will still be valid, and you can continue to execute statements in that session. The
session that does not lose its lock to deadlock detection will continue to execute as if nothing
happened.

Assume Session 2 was sacrificed to deadlock detection, no value would be inserted into a and
an error will be returned. But the insertion of value 3 into b would still be valid. Session 1
would continue to wait while inserting into table b until Session 2 either commits or aborts,
thus freeing the lock it has on table b.

When you begin your transaction with BEGIN EXCLUSIVE, the session is never aborted due to
deadlock or lock contention with another transaction. Non-exclusive transactions are allowed
to execute concurrently with the exclusive transaction, but the non-exclusive transactions
will have their locks released if deadlock with the exclusive transaction occurs. If two or more
exclusive transactions are running at the same time, they will be forced to execute in serial.

If Session 1 was using an exclusive transaction, then Session 2 would lose its locks when
deadlock is detected between the two. If both Session 1 and Session 2 start an exclusive
transaction, then the last one to start the exclusive transaction would be blocked after
executing BEGIN EXCLUSIVE until the first one is committed or aborted.

8/27/2010 Getting Started with the BDB SQL APIs Page 11

Chapter 3. Configuring the Berkeley DB SQL
interface

In almost all cases, there is no need for you to directly configure Berkeley DB resources;
instead, you can use the same configuration techniques that you always use for SQLite. The
Berkeley DB SQL interface will take care of the rest.

However, there are a few configuration activities that some unusually large or busy
installations might need to make and for which there is no SQLite equivalent. This chapter
describes those activities.

Introduction to Environments

Before continuing with this section, it is necessary for you to have a high-level understanding
of Berkeley DB's environments.

In order to manage its resources (data, shared cache, locks, and transaction logs), Berkeley DB
often uses a directory that is called the Berkeley DB environment. As used with the BDB SQL
interface, environments contain log files and the information required to implement a shared
cache and fine-grained locking. This environment is placed in a directory that appears on the
surface to be a SQLite rollback file.

That is, if you use BDB SQL interface to create a database called mydb.db, then a directory
is created alongside of it called mydb.db-journal. Normally, SQLite creates a journal file
only when a transaction is underway, and deletes this file once the transaction is committed
or rolled back. However, that is not what is happening here. The BDB SQL interface journal
directory contains important Berkeley DB environment information that is meant to persist
between transactions and even between process runtimes. So it is very important that you do
not delete the contents of your Berkeley DB journal directory. Doing so will cause improper
operation and could lead to data loss.

Note that the environment directory is also where you put your DB_CONFIG file. This file can
be used to configure additional tuning parameters of Berkeley DB, if its default behavior is not
appropriate for your application. For more information on the DB_CONFIG file, see the next
section.

Note

Experienced users of Berkeley DB should be aware that neither DB_USE_ENVIRON nor
DB_USE_ENVIRON_ROOT are specified to DB_ENV->open(). As a result, the DB_HOME
environment variable is ignored. This means that the BDB SQL interface will always
create a database in the location defined by the database name given to the BDB SQL
interface.

The DB_CONFIG File

You can configure most aspects of your Berkeley DB environment by using the DB_CONFIG file.
This file must be placed in your environment directory. When using the BDB SQL interface, this

Configuring the Berkeley DB SQL interface

8/27/2010 Getting Started with the BDB SQL APIs Page 12

is the directory created alongside of your database. It has the same name as your database,
followed by a -journal extension. For example, if your database is named mydb.db, then
your environment directory is created next to the mydb.db file, and it is called mydb.db-
journal.

If a DB_CONFIG file exists in your environment directory, it will be read for lines of the format
NAME VALUE when your environment is opened. This happens when your application starts up
and creates its first connection to the database.

One or more whitespace characters are used to delimit the two parts of the line, and trailing
whitespace characters are discarded. All empty lines or lines whose first character is a
whitespace or hash (#) character are ignored. Each line must specify both the NAME and the
VALUE of the pair. The specific NAME VALUE pairs you can use with the BDB SQL interface are
documented in the Berkeley DB C API .

In some cases, you must either specify a configuration option before the environment is
created, or the environment must be re-created before the configuration option will take
effect. The documentation for each configuration option will indicate where this is true.

Creating the DB_CONFIG File Before Environment Creation

In order to provide the DB_CONFIG file before the environment is first created, physically
make the environment directory in the correct location in your filesystem (this is wherever
you want to place your database file), and put the DB_CONFIG file there before you create
your database.

Re-creating the Environment

Some DB_CONFIG parameters require you to re-create your environment before they take
effect. The DB_CONFIG parameter descriptions indicates where this is the case.

To re-create your environment:

• Make sure the DB_CONFIG file contains the following line:

add_data_dir ..

(This line should already be in the DB_CONFIG file.)

• Run the db_recover command line utility. If you run it from within your environment
(-journal) directory, no command line arguments are required. If you run it from
outside your environment directory, use the -h parameter to identify the location of the
environment:

db_recover -h /some/path/to/mydb.db-journal

Configuring the Database Page Size

When using the BDB SQL interface, you configure your database page size in exactly the same
way as you do when using SQLite. That is, use PRAGMA page_size to report and set the page

http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
../api_reference/C/db_recover.html

Configuring the Berkeley DB SQL interface

8/27/2010 Getting Started with the BDB SQL APIs Page 13

size. This PRAGMA must be called before you create your first SQLite table. See the PRAGMA
page_size documentation for more information.

When you use PRAGMA cache_size to size your in-memory cache, you provide the cache size
in terms of a number of pages. Therefore, your database page size influences how large your
cache is, and so determines how much of your database will fit into memory. If you adjust the
database page size, you may also want to adjust the in-memory cache size, as described in
Configuring the In-Memory Cache (page 13).

The size of your pages can also affect how efficient your application is at performing disk
I/O. It will also determine just how fine-grained the fine-grained locking actually is. This is
because Berkeley DB locks database pages when it acquires a lock.

Selecting the Page Size

Note that the default value for your page size is probably correct for the physical hardware
that you are using. In almost all situations, the default page size value will give your
application the best possible I/O performance. For this reason, tuning the page size should
rarely, if ever, be attempted.

That said, when using the BDB SQL interface, the page size affects how much of your tables
are locked when read and/or write locks are acquired. (See Internal Database Usage (page 7)
for more information.) Increasing your page size will typically improve the bandwidth you get
accessing the disk, but it also may increase contention if too many key data pairs are on the
same page. Decreasing your page size frequently improves concurrency, but may increase the
number of locks you need to acquire and may decrease your disk bandwidth.

When changing your page size, make sure the value you select is a power of 2 that is greater
than 512 and less than or equal to 64KB. (Note that the standard SQLite MAX_PAGE_SIZE limit
is not examined for this upper bound.)

Beyond that, there are some additional things that you need to consider when selecting your
page size. For a thorough treatment of selecting your page size, see the section on Selecting a
page size in the Berkeley DB Programmer's Reference Guide.

Selecting the Database File Size

Berkeley DB sets an upper bound on how large your database file size is allowed to be. Any
attempt to insert data into the database that grows this file beyond this upper bound results
in a failure.

You can set the upper bound for your database file size using PRAGMA max_page_count. Issue
this PRAGMA with no value to see what the current maximum database file is.

Configuring the In-Memory Cache

SQLite provides an in-memory cache which you size according to the maximum number of
database pages that you want to hold in memory at any given time.

Berkeley DB also provides an in-memory cache that performs the same function as SQLite.
You can configure this cache using the exact same PRAGMAs as you are used to using with

http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_page_size
../programmer_reference/general_am_conf.html#am_conf_pagesize
../programmer_reference/general_am_conf.html#am_conf_pagesize

Configuring the Berkeley DB SQL interface

8/27/2010 Getting Started with the BDB SQL APIs Page 14

SQLite. See PRAGMA cache_size and PRAGMA default_cache_size for details. As is the case
with SQLite, you use these PRAGMAs to describe the total number of pages that you want in
the cache.

Note that you can change the cache size only if no table operations have been executed on
the database. In other words, to change your cache size:

• Open a handle to your database.

• Execute PRAGMA cache_size

• Proceed with any table modification operations (CREATE, UPDATE, INSERT, SELECT) that you
might want to perform.

Alternatively, you can set you cache size with your DB_CONFIG file, and so skip the necessity
of executing the PRAGMA. See the Berkeley DB C API for details.

Administering Log Files

Your environment directory contains log files. Berkeley DB log files are used to record all the
transactional activity performed against the Berkeley DB database files. This information is
used after an application or system failure to automatically restore the database to an up-to-
date consistent point.

Your log files are maintained by Berkeley DB's logging subsystem. There are some aspects of
the Berkeley DB logging subsystem that you can configure using DB_CONFIG parameters, and
(sometimes) by using PRAGMAs.

Note

For most users of the BDB SQL interface, there should not normally be any reason
to manage your log files or otherwise worry about them. However, it is important to
realize that they can not simply be deleted. Note that when using the Berkeley DB SQL
interface, your log files will be automatically deleted by Berkeley DB when they are
no longer needed.

The things you can manage for your logging subsystem are:

• Size of the log files. See Setting the Log File Size (page 14).

• Size of the logging subsystem's region. See Configuring the Logging Region Size (page 15).

• Size of the log buffer in memory. Setting the In-Memory Log Buffer Size (page 15).

Setting the Log File Size

Whenever a pre-defined amount of data is written to a log file (10 MB by default), the
BDB SQL interface stops using the current log file and starts writing to a new file. You can
change the maximum amount of data contained in each log file by using either PRAGMA
journal_size_limit or the set_lg_max DB_CONFIG file parameter.

http://www.sqlite.org/pragma.html#pragma_cache_size
http://www.sqlite.org/pragma.html#pragma_default_cache_size
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf

Configuring the Berkeley DB SQL interface

8/27/2010 Getting Started with the BDB SQL APIs Page 15

If you use PRAGMA journal_size_limit, then using this PRAGMA with no value simply returns
the current journal size limit. Using:

PRAGMA journal_size_limit=N

sets the log size to N bytes. If the PRAGMA is successful, N is returned. If it fails, the previous
log file size is returned. Failures can occur if you specify a log file size that is less than 4K
bytes, or if you specify a log file size larger than the permitted file size on the system.

If you use the DB_CONFIG file to manage this value, set_lg_max may be changed without re-
creating the environment. You will, however, have to restart your application in order for the
DB_CONFIG file to be re-read.

The DB_CONFIG file is described in The DB_CONFIG File (page 11). The set_lg_max
parameter is described in the Berkeley DB C API .

For a description of how, when and why you should change the size of your log files, see the
Selecting a page size section in the Berkeley DB Programmer's Reference Guide.

Configuring the Logging Region Size

The logging subsystem's default region size is 512 KB. The logging region is used to store
database and table names, and so you may need to increase its size if you will be using a large
number of tables.

You can set the size of your logging region by using the set_lg_regionmax DB_CONFIG
parameter. Note that to manage this value you must set it before you create your
environment, or you must re-create your environment. See The DB_CONFIG File (page 11)
for more information.

The set_lg_regionmax parameter is described in the Berkeley DB C API .

Setting the In-Memory Log Buffer Size

When using named (persistent) databases, log information is stored in-memory until the
storage space fills up, or a transaction commit forces the log information to be flushed to
disk.

It is possible to increase the amount of memory available to your file log buffer. Doing so
improves throughput for long-running transactions, or for transactions that produce a large
amount of data. Note that for named (persistent) databases, the default log buffer space is 32
KB.

You can increase your log buffer space by using the set_lg_bsize DB_CONFIG parameter.
For the BDB SQL interface, when the logging subsystem is configured for on-disk logging, the
default size of the in-memory log buffer is approximately 64KB. Note that this method can
only be called before the environment is first opened, so you will have to set this by creating
your -journal directory, and then creating your database. See The DB_CONFIG File (page
11) for more information.

The set_lg_bsize parameter is described in the Berkeley DB C API .

http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
../programmer_reference/log_config.html
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf

Configuring the Berkeley DB SQL interface

8/27/2010 Getting Started with the BDB SQL APIs Page 16

Note

When working with in-memory databases, the environment is configured to perform
logging in-memory. The log buffer is set to 64 * 1024, and the maximum log size is set
to 32 * 1024.

Managing the Locking Subsystem

Whenever the BDB SQL interface reads from or writes to the database, the underlying
Berkeley DB code must acquire locks. These locks represent a finite resource. For most
installations, you should never have to worry about the locking resources available to Berkeley
DB because the default values are appropriate for most applications.

However, if your application is using an extremely large number of threads that are all
simultaneously accessing your data, then you might have to increase your locking resources.
Similarly, if your database contains a very large number of tables that you are accessing using
one or more simultaneous threads or processes, then you might also need to increase your
locking resources.

On the other hand, if you are using the BDB SQL interface on devices with extremely limited
resources, then you might want to reduce your locking resources.

All of these values must be configured before your environment is first created. To change
these values after environment creation time, you must re-create the environment. See The
DB_CONFIG File (page 11) for more information.

The maximum locking values that you can manage, and the DB_CONFIG parameter that you
use to manage that value, are:

• The maximum number of lockers supported by the environment. This value is used by the
environment when it is opened to estimate the amount of space that it should allocate for
various internal data structures. By default, 2,000 lockers are supported.

The maximum number of lockers corresponds roughly to the maximum number of
concurrent transactions in the system.

To configure this value, use the set_lk_max_lockers DB_CONFIG parameter. See the
Berkeley DB C API for details.

• The maximum number of locks supported by the environment. By default, 10,000 locks are
supported.

To configure this value, use the set_lk_max_locks DB_CONFIG parameter. See the Berkeley
DB C API for details.

• The maximum number of locked objects supported by the environment. By default, 10,000
objects can be locked.

To configure this value, use the set_lk_max_objects DB_CONFIG parameter. See the
Berkeley DB C API for details.

http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf

Configuring the Berkeley DB SQL interface

8/27/2010 Getting Started with the BDB SQL APIs Page 17

Note that when you are using the BDB SQL interface, the default values provided in the
previous list are different from the default values used by Berkeley DB in general. For
Berkeley DB in general, the defaults for all these values are set to 1,000.

8/27/2010 Getting Started with the BDB SQL APIs Page 18

Chapter 4. Administrating Berkeley DB SQL
Databases

This chapter provides administrative procedures that are unique to the Berkeley DB SQL
interface.

Backing Up Berkeley DB SQL Databases

You can use the standard SQLite .dump command to backup the data managed by the BDB SQL
interface. You can also use the standard Berkeley DB backup mechanisms on the database.

The BDB SQL interface supports the standard SQLite Online Backup API. However, there
is a small difference between the two interfaces. In the BDB SQL interface, the value
returned by the sqlite3_backup_remaining method and the number of pages passed to
the sqlite3_backup_step method, are estimates of the number of pages to be copied
and not exact values. To be certain that the backup process is complete, check if the
sqlite3_backup_step method has returned SQLITE_DONE. To learn how to use SQLite Online
Backup API, see the official SQLite Documentation Page.

This section describes the mechanisms that can be performed from the command line.

Offline Backups

To create an offline backup:

1. Commit or abort all on-going transactions.

2. Pause all database writes.

3. Force a checkpoint. See the db_checkpoint command line utility.

4. Copy your database file to the backup location. Note that in order to perform recovery
from this backup, do not change the name of the database file.

5. Copy the last log file to your backup location. Your log files are named log.xxxxxxxxxx,
where xxxxxxxxxx is a sequential number. The last log file is the file with the highest
number.

Remember that your log files are placed in the environment directory, which is created
on-disk next to your database file. It has the same name as your database file, but adds
a -journal extension. For example, if your database is named mydb.db, then your
environment directory is named mydb.db-journal

Hot Backup

To create a hot backup, you do not have to stop database operations. Transactions may be on-
going and you can be writing to your database at the time of the backup. However, this means
that you do not know exactly what the state of your database is at the time of the backup.

http://www.sqlite.org/backup.html
../api_reference/C/db_checkpoint.html

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 19

You can use the db_hotbackup command line utility to create a hot backup for you. This utility
will (optionally) run a checkpoint and then copy all necessary files to a target directory. To do
this when you are using the BDB SQL interface:

1. Create a DB_CONFIG file in your environment directory.

2. Add a set_data_dir parameter to the DB_CONFIG file. This parameter indicates what
directory contains the actual Berkeley DB database managed by this environment. That
directory is one level up from you environment, so you want this parameter to be:

 set_data_dir ..

3. Add a setl_lg_dir parameter to the DB_CONFIG file. This parameter identifies the
directory that contains the environment's log files. This parameter should be:

 set_lg_dir .

4. Run the db_hotbackup command:

 db_hotbackup -h [environment directory] -b [target directory] -D

The -D option tells the utility to read the DB_CONFIG file before running the backup.

Alternatively, you can manually create a hot backup as follows:

1. Copy your database file to the backup location. Note that in order to perform recovery
from this backup, do not change the name of the database file.

2. Copy all logs to your backup location.

Remember that your log files are placed in the environment directory.

Note

It is important to copy your database file and then your logs. In this way, you can
complete or roll back any database operations that were only partially completed
when you copied the database.

Incremental Backups

Once you have created a full backup (that is, either a offline or hot backup), you can create
incremental backups. To do this, simply copy all of your currently existing log files to your
backup location.

Incremental backups do not require you to run a checkpoint or to cease database write
operations.

When you are working with incremental backups, remember that the greater the number of
log files contained in your backup, the longer recovery will take. You should run full backups
on some interval, and then do incremental backups on a shorter interval. How frequently you
need to run a full backup is determined by the rate at which your database changes and how
sensitive your application is to lengthy recoveries (should one be required).

../api_reference/C/db_hotbackup.html
../api_reference/C/db_hotbackup.html

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 20

You can also shorten recovery time by running recovery against the backup as you take each
incremental backup. Running recovery as you go means that there will be less work for the
BDB SQL interface to do if you should ever need to restore your environment from the backup.

About Unix Copy Utilities

If you are copying database files you must copy databases atomically, in multiples of the
database page size. In other words, the reads made by the copy program must not be
interleaved with writes by other threads of control, and the copy program must read the
databases in multiples of the underlying database page size. Generally, this is not a problem
because operating systems already make this guarantee and system utilities normally read in
power-of-2 sized chunks, which are larger than the largest possible Berkeley DB database page
size.

On some platforms (most notably, some releases of Solaris), the copy utility (cp) was
implemented using the mmap() system call rather than the read() system call. Because
mmap() did not make the same guarantee of read atomicity as did read(), the cp utility could
create corrupted copies of the databases.

Also, some platforms have implementations of the tar utility that performs 10KB block
reads by default. Even when an output block size is specified, the utility will still not read
the underlying database in multiples of the specified block size. Again, the result can be a
corrupted backup.

To fix these problems, use the dd utility instead of cp or tar. When you use dd, make sure you
specify a block size that is equal to, or an even multiple of, your database page size. Finally,
if you plan to use a system utility to copy database files, you may want to use a system call
trace utility (for example, ktrace or truss) to make sure you are not using a I/O size that is
smaller than your database page size. You can also use these utilities to make sure the system
utility is not using a system call other than read().

Recovering from a Backup

If you used standard Berkeley DB backup procedures to backup your database, then you can
restore your database using the procedures described in this section.

Note that Berkeley DB supports two types of recovery:

• Normal recovery, which examines only those log records needed to bring the database to a
consistent state since the last checkpoint. Normal recovery starts with any logs used by any
transactions active at the time of the last checkpoint, and examines all logs from then to
the current logs.

Normal recovery is automatically run (if necessary) when you open your database. It is
necessary to run recovery if a thread or process shuts down without properly closing the
database.

• Catastrophic recovery examines all available log files. You use catastrophic recovery to
restore your database from a previously created backup.

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 21

Catastrophic Recovery

Use catastrophic recovery when you are recovering your database from a previously created
backup. Note that to restore your database from a previous backup, you should copy the
backup to a new environment directory, and then run catastrophic recovery. Failure to do so
can lead to the internal database structures being out of sync with your log files.

To run catastrophic recovery:

• Shutdown all database operations.

• Restore the backup to an empty directory. This means you need your database file, as well
as the -journal directory, and any available log files that the backup contains.

Note that the backup database file and the journal directory must have the same name
as the database and journal directory that you are restoring. You can put the backup in a
different location on disk, but the name of the file and directory must remain the same.

• Make sure that a DB_CONFIG file exists in the journal directory that you are using to restore
your database. This file must contain a the following line:
set_data_dir ..

• Run the db_recover command line utility with the -c option.

Note that catastrophic recovery examines every available log file — not just those log
files created since the last checkpoint as is the case for normal recovery. For this reason,
catastrophic recovery is likely to take longer than does normal recovery.

Syncing with Oracle Databases

Oracle's SQLite Mobile Client product allows you to synchronize a SQLite database with a back-
end Oracle database. Because the BDB SQL interface is a drop-in replacement for SQLite, this
means you can synchronize a Berkeley DB database with an Oracle back-end as well.

Note

Berkeley DB SQL databases are not compatible with SQLite databases. In order for
sync to work, you must remove any currently existing SQLite databases.

Syncing on Unix Platforms

For Unix platforms, the easiest way to use Oracle's SQLite Mobile Client is to build the BDB SQL
interface with the compatibility option. That is, specify both --enable-sql and --enable-
sql-compat when you configure your Berkeley DB installation. This causes libraries with the
exact same name as the SQLite libraries to be created when you build Berkeley DB.

Having done that, you must then change your platform's library search path so that it finds
the Berkeley DB libraries before any installed SQLite libraries. On many (but not all) Unix
platforms, you do this by modifying the LD_LIBRARY_PATH environment variable. See your
operating system documentation for information on how to change your search path for
dynamically linked libraries.

../api_reference/C/db_recover.html

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 22

Once you have properly configured and built your Berkeley DB installation, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Lite documentation for information on using SQLite Mobile
Client.

For information on building the BDB SQL interface, see the Configuring the SQL Interface
section in the Berkeley DB Installation and Build Guide.

Syncing on Windows Platforms

For Windows platforms, you use Oracle's SQLite Mobile Client by building the BDB SQL
interface in the same way as you normally do. See the Building Berkeley DB for Windows
chapter in the Berkeley DB Installation and Build Guide for more information.

Once you have built the product, rename the Berkeley DB SQL dlls so that they are named
identically to the standard SQLite dlls (sqlite3.dll). Install the renamed Berkeley DB SQL dll
along with the main Berkeley DB dll (libdb5x.dll) in the same directory as the SQLite dlls. See
the Building the SQL API section for details.

Finally, configure your Windows PATH environment variable so that it finds your Berkeley DB
dlls before it finds any standard SQLite dlls that might be installed on your system.

Once you have built your Berkeley DB installation and renamed your dlls, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Lite documentation for information on using SQLite Mobile
Client.

Syncing on Windows Mobile Platforms

For Windows Mobile platforms, you use Oracle's SQLite Mobile Client by building the BDB SQL
interface in the same way as you normally do. See the Building Berkeley DB for Windows
Mobile chapter in the Berkeley DB Installation and Build Guide for more information.

Once you have built the product, rename the Berkeley DB SQL dll to sqlite3.dll. Then, copy
the dll to the \Windows path on the phone. Note that you only need the new sqlite3.dll;
you do not need any of the other Berkeley DB dlls.

Once you have built your Berkeley DB installation and renamed your dlls, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Lite documentation for information on using SQLite Mobile
Client.

Data Migration

If you have a database created by SQLite, you can migrate it to a Berkeley DB database for use
with the BDB SQL interface. For production applications, you should do this only when your
application is shutdown.

http://download.oracle.com/docs/cd/E12095_01/nav/portal_booklist.htm
../installation/build_unix_sql.html
../installation/build_win.html
../installation/build_win_sql.html
http://download.oracle.com/docs/cd/E12095_01/nav/portal_booklist.htm
../installation/build_wince.html
../installation/build_wince.html
http://download.oracle.com/docs/cd/E12095_01/nav/portal_booklist.htm

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 23

Migration Using the Shells

To migrate your data from SQLite to a Berkeley DB database:

1. Make sure your application is shutdown.

2. Open the SQLite database within the sqlite3 shell.

3. Execute the .output command to specify the location where you want to dump data.

4. Dump the database using the SQLite .dump command.

5. Close the sqlite3 shell and open the Berkeley DB dbsql shell. Note that if you build the
BDB SQL interface with the compatibility option, you can alternatively use Berkeley DB's
sqlite3 utility.

6. Load the dumped data using the .read command.

Note that you can migrate in the reverse direction as well. Dump the Berkeley DB database by
calling .dump from within the dbsql shell, and load it into SQLite by calling .read from within
SQLite's sqlite3 shell.

Supported Data and Schema

You can migrate data between SQLite and Berkeley DB that uses the UTF-8 character
encoding.

The following data types can be migrated between SQLite and Berkeley DB:

• CHAR, TEXT , VARCHAR, NVARCHAR, STRING

• REAL, DOUBLE, FLOAT

• INTEGER, BOOLEAN, BIG INTEGER, NUMBER

• NUMERIC

• BLOB, CLOB

• NULL, NOT NULL

• COLLATE BINARY, COLLATE RTRIM, COLLATE NOCASE

• DATETIME, CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP

The following schema can be migrated between SQLite and Berkeley DB:

• PRAGMA writable_schema=ON/OFF

• PRAGMA foreign_keys=ON/OFF

• PRAGMA cache_size

• CREATE TABLE

• PRIMARY KEY

../api_reference/C/dbsql.html
../api_reference/C/sqlite3.html
../api_reference/C/dbsql.html

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 24

• UNIQUE

• CONFLICT IGNORE, FAIL, REPLACE, ABORT, ROOLBACK

• REFERENCE ON ... CASECADE, ON ... NO ACTION, DEFERRABLE INITIALLY DEFERRED, and so
forth.

• AUTOINCREMENT

• Static DEFAULT value, dynamic DEFAULT value

• Functions such as datetime, typeof, and so forth.

• ASC, DESC

• HIDDEN

• CHECK

• CREATE INDEX, UNIQUE INDEX

• CREATE VIEW

• SELECT statement, ANALYZE

• JOIN

• UNION

• CREATE TRIGGER AFTER/BEFORE BEGIN

• CREATE VIRTUAL TABLE USING

• INSERT

Replicating Berkeley DB SQL Databases

It is possible to replicate a Berkeley DB SQL database using the db_replicate utility. This
section outlines the configuration steps required to enable replication, and provides an
example of how to use the utility with a Berkeley DB SQL database.

Note

The following section assumes that you are familiar with Berkeley DB replication
concepts. If not, you should read the Running Replication using the db_replicate
Utility section in the Berkeley DB Programmer's Reference Guide.

Preparing to use Replication with the Berkeley DB SQL API

In order to use replication with a Berkeley DB SQL application, you must do a few things prior
to creating a database.

../api_reference/C/db_replicate.html
../programmer_reference/rep_replicate.html
../programmer_reference/rep_replicate.html

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 25

1. Add the following lines to the DB_CONFIG file:

set_open_flags db_init_rep
add_data_dir ../
set_open_flags db_thread
set_open_flags db_register

This causes the Berkeley DB SQL engine to create a database that is compatible with
replication.

See The DB_CONFIG File (page 11) for more information about that file.

2. Tell Berkeley DB how to startup the local (current) site. Do this by adding a line to the
DB_CONFIG file of the form:

repmgr_set_local_site <address> <port>

where <address> is the URL for the local machine and <port> is the port used on this
machine for replication communications.

For more information, on configuring the local site, see the DB_ENV-
>repmgr_set_local_site() method.

3. Tell Berkeley DB about the other machines that are participating in your replication
group. Do this by adding a line to the DB_CONFIG file of the form:

repmgr_add_remote_site <address> <port>

for each machine participating in your replication group, other than the local machine.
Here, <address> is the URL for the remote machine that you are identifying, and <port> is
the port used on that machine for replication communications.

For more information, see the DB_ENV->repmgr_add_remote_site() method.

Using Replication with the Berkeley DB SQL API

Once you have performed the configuration steps described in the previous section, you can
start using (and populating) your Berkeley DB SQL database as normal.

When you are ready to start replicating your Berkeley DB SQL database, do the following:

1. Each site in the replication group needs to have a starting point. The best way to create
that is to use a backup of the database that will be replicated. Install a copy of the
backup at each of the sites in the replication group. For detailed instructions on creating
a backup, see Backing Up Berkeley DB SQL Databases (page 18).

2. Create or update the DB_CONFIG file at each site in the replication group as discussed
in the previous section. Make sure that each site has the correct settings for DB_ENV-
>repmgr_set_local_site() and DB_ENV->repmgr_add_remote_site().

3. On the site that you want to start as the master of the replication group, run the
db_replicate utility in the following way:

../api_reference/C/repmgrlocal_site.html
../api_reference/C/repmgrlocal_site.html
../api_reference/C/repmgrremote_site.html
../api_reference/C/repmgrlocal_site.html
../api_reference/C/repmgrlocal_site.html
../api_reference/C/repmgrremote_site.html
../api_reference/C/db_replicate.html

Administrating Berkeley DB SQL Databases

8/27/2010 Getting Started with the BDB SQL APIs Page 26

db_replicate -M -h <journal-path>

where <journal-path> is the path to the journal directory of the database that you want
to replicate.

4. For each of the other sites in the group, run the db_replicate utility in the following
way:

db_replicate -h <journal-path>

where <journal-path> is the path to the journal directory of the database that you want
to replicate.

5. Verify that replication has started successfully. You can do this by issuing an update
operation on the site you selected as the master, and then running a query on a remote
site to verify that the updated contents are visible on the remote site.

	Getting Started with the Oracle Berkeley DB SQL APIs
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Berkeley DB SQL: The Absolute Basics
	BDB SQL Is Nearly Identical to SQLite
	Getting and Installing BDB SQL
	On Windows Systems
	On Unix

	The Journal Directory
	Unsupported PRAGMAs
	Changed PRAGMAs
	PRAGMA journal_size_limit
	PRAGMA max_page_count

	Added PRAGMAs
	PRAGMA TXN_BULK

	Miscellaneous Differences
	Berkeley DB Concepts
	Encryption

	Chapter 2. Locking Notes
	Internal Database Usage
	Lock Handling
	SQLite Lock Usage
	Lock Usage with the DB SQL Interface

	Chapter 3. Configuring the Berkeley DB SQL interface
	Introduction to Environments
	The DB_CONFIG File
	Creating the DB_CONFIG File Before Environment Creation
	Re-creating the Environment

	Configuring the Database Page Size
	Selecting the Page Size

	Selecting the Database File Size
	Configuring the In-Memory Cache
	Administering Log Files
	Setting the Log File Size
	Configuring the Logging Region Size
	Setting the In-Memory Log Buffer Size

	Managing the Locking Subsystem

	Chapter 4. Administrating Berkeley DB SQL Databases
	Backing Up Berkeley DB SQL Databases
	Offline Backups
	Hot Backup
	Incremental Backups
	About Unix Copy Utilities

	Recovering from a Backup
	Catastrophic Recovery

	Syncing with Oracle Databases
	Syncing on Unix Platforms
	Syncing on Windows Platforms
	Syncing on Windows Mobile Platforms

	Data Migration
	Migration Using the Shells
	Supported Data and Schema

	Replicating Berkeley DB SQL Databases
	Preparing to use Replication with the Berkeley DB SQL API
	Using Replication with the Berkeley DB SQL API

